Fairness for Robust Learning to Rank

¹Deprtment of Computer Science, University of Illinois at Chicago ²Bosch Center for Artificial Intelligence, Carnegie Mellon University

Summary

- Conventional ranking systems: Maximize the utility of the ranked items to users.
- Fairness-aware ranking systems: Maximize the utility + balance the exposure for different protected attributes such as gender or race.
- **FairRobust LTR** : Fairness-aware + Distributionally Robust
- We derive a new ranking system based on the first principles of distributional robustness.
- Provide better utility for highly fair rankings than existing baseline methods.

Background and Notation

- **Ranking Problem**
- Rank a candidate set of items
- Ranking/Permutation
- Permutation π places item d_i at rank j
- Relevance judgment for d_i

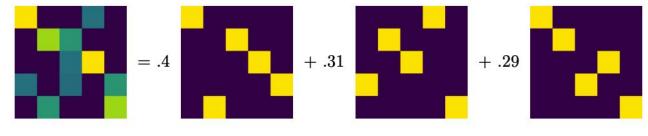
Utility of Ranking [general form]:

$$U(\pi) = \sum_{d_i \in D} u(d_i) v(j)$$

- $u(d_i)$: utility of a single item d_i
- v(j): attention d_i gets by being placed at rank j by permutation π
- **DCG**: common evaluation measure in ranking system

$$DCG(\pi) = \sum_{d_i \in D} \frac{2^{rel(d_i)} - 1}{\log(1+j)}$$

- □ Searching the space of all rankings is Exponential in *N*
- **Solution**: use doubly stochastic matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$ instead of permutation π .
- $P_{i,k}$: Probability that $\pi_i = k$



• Expected utility for a probabilistic ranking in a vectorized form: $\boldsymbol{U}(\boldsymbol{P}) = \mathbf{u}^{\mathrm{T}} \mathbf{P} \mathbf{v}$

$$D = \{d_1, d_2, \dots, d_N\}$$
$$\pi$$
$$\pi_i = j$$
$$rel_i$$

Fairness of Exposure in Ranking

- Fairness notions used in probabilistic ranking: $\mathbf{f}^T \mathbf{P} \mathbf{v} = h$ [1].
- f: a vector to encode group membership and/or relevance of each document. h is scalar.

Distributionally Robust Learning to Rank

The fair ranking optimization can be expressed as a linear programming problem (post-processing) [1]:

$$\max_{\mathbf{P} \in \Delta \cap \Gamma_{fair}} \mathbf{u}^{\mathrm{T}} \mathbf{P} \mathbf{v} \text{ where: } \Delta : \mathbf{P} \mathbf{1} = \mathbf{P}^{T} \mathbf{1},$$
$$\mathbf{P}_{j,k} \geq 0, \forall 1 \leq j, k \leq M$$

- **Extension:** Derive an LTR approach. [in-processing]
- Learn to optimize utility and fairness simultaneously.

Definition: The fair probabilistic ranking $\mathbf{P} \in \mathbb{R}^{M \times M}$ in adversarial LTR learns a fair ranking that maximizes the worstcase ranking utility approximated by an adversary $q(\tilde{u})$, constrained to match the feature statistics of the training data:

$$\max_{\mathbf{P}\in\Delta\cap\Gamma_{fair}}\min_{\mathbf{q}}\mathbb{E}_{\mathbf{X}\sim\tilde{P}}\left[U(\mathbf{X},\mathbf{P},\mathbf{q})\right]$$

s.t. $\mathbb{E}_{\mathbf{X}\sim\tilde{P}}\left[\sum_{j=1}^{M}\mathbb{E}_{\check{u}_{j}|\mathbf{X}\sim\mathbf{q}}\left[\check{u}_{j}\mathbf{X}_{j,:}\right]\right]=\mathbb{E}_{\mathbf{X},\mathbf{u}\sim\tilde{P}}\left[\sum_{j=1}^{M}u_{j}\mathbf{X}_{j,:}\right]$

Optimization

Solve the formulation in Lagrangian dual form:

$$\max_{\theta} \mathbb{E}_{\mathbf{X},\mathbf{u}\sim\tilde{P}} \left[\max_{\mathbf{P}\in\Delta} \min_{0\leq \mathbf{q}\leq 1} \mathbf{q}^{\mathrm{T}} \mathbf{P} \mathbf{v} + \left\langle \mathbf{q} - \mathbf{u}, \sum_{l} \theta_{l} \mathbf{X}_{:,l} \right\rangle + \lambda \mathbf{f}^{T} \mathbf{P} \mathbf{v} \right]$$

- Optimize the dual parameters $\theta \in \mathbb{R}^{L \times 1}$ for the feature matching constraint of *L* features by gradient decent.
- Use λ as a penalty parameter for fairness constraint.
- $\mathbf{u} \in \mathbb{R}^{M \times 1}$ is a vector of true labels.
- $\mathbf{q} \in \mathbb{R}^{M \times 1}$ is a probability vector of the adversary's estimation of each item being relevant.
- $\mathbf{X}_{:.l} \in \mathbb{R}^{M \times 1}$ denotes the l_{th} feature of *M* samples.
- *S* is the set of protected attributes
- $\mathbf{v} \in \mathbb{R}^{M \times 1}$ is a vector containing the values of position bias function for each position.

0.82 0.80 0.78 -ບິ 0.76 -ດ ບິ 0.74 -0.72 -0.70

Fairest results achieved by **Fair-Robust** and baseline methods.

References

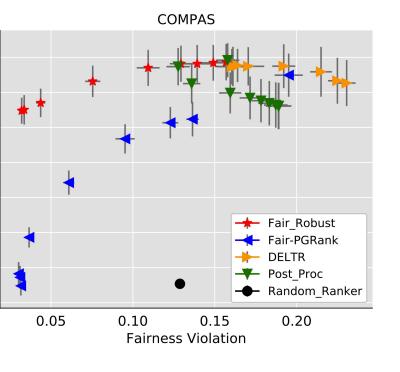
[1] Singh, Ashudeep, and Thorsten Joachims. "Fairness of exposure in rankings." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2219-2228. 2018.

Ranker player[P]: Choosing a distribution over rankings constrained to provide fairness while maximizing utility.

Adversary player[q]: Choosing a distribution of item relevancies that minimizes utility while being similar to training data properties.

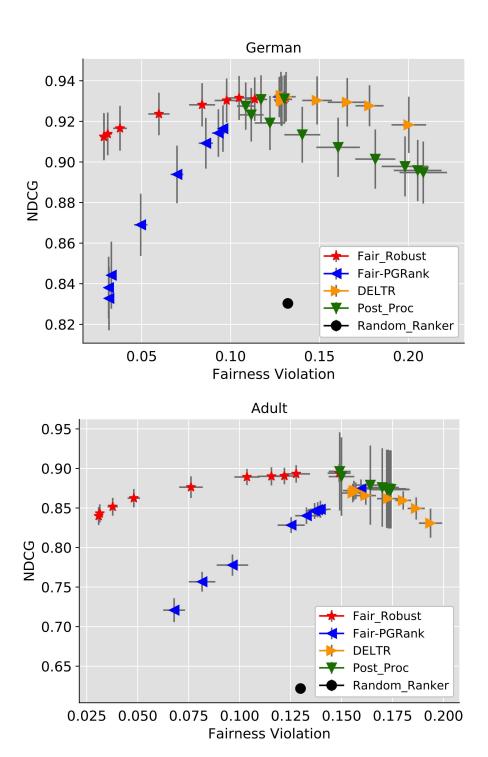
Experiments

 Construct LTR dataset from fair classification datasets. Goal: provide low fairness violation and high NDCG Fair_Robust achieves preferable utility-fairness trade-off



Performance-Fairness Trade-off:

Y axis: Performance (**top** is better) X axis: Fairness violation (left is better)



Dataset	COMPAS		German	
	NDCG	\hat{D}_{group}	NDCG	\hat{D}_{group}
FAIR_ROBUST	$\textbf{0.789} \pm \textbf{0.007}$	0.032 ± 0.001	$\textbf{0.912} \pm \textbf{0.011}$	$\textbf{0.029} \pm \textbf{0.002}$
FAIR_PGRANK	0.696 ± 0.006	$\textbf{0.030} \pm \textbf{0.001}$	0.838 ± 0.015	0.031 ± 0.001
DELTR	0.815 ± 0.010	0.160 ± 0.009	0.933 ± 0.011	0.128 ± 0.003
POST_PROC	0.818 ± 0.009	0.158 ± 0.007	0.927 ± 0.011	0.108 ± 0.005