THE
UNIVERSITY OF ILLINOIS
AT
CHICAGO

Fairness for Robust Log Loss Classification

Ashkan Rezaei ${ }^{1}$, Rizal Fathony ${ }^{2}$, Omid Memarrast ${ }^{1}$, Brian Ziebart ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Illinois at Chicago
${ }^{2}$ School of Computer Science, Carnegie Mellon University

Introduction

- We re-derive a new classifier from the first principles of distributional robustness that incorporates group fairness criteria into a worst-case logarithmic loss minimization.
- Given population distribution $(\mathbf{X}, A, Y) \sim P$ with a protected attribute A and a decision variable \widehat{Y}. A classifier \mathbb{P} satisfies group fairness constraints when:
- Demographic Parity (DP): $\mathbb{P}(\widehat{Y}=1 \mid A=a)=\mathbb{P}(\widehat{Y}=1) \quad \forall a \in\{0,1\}$
- Equalized Odds (E.ODD) and Equalized Opportunity (E.OPP):

$$
\begin{array}{ll}
\mathbb{P}(\widehat{Y}=1 \mid A=a, Y=y)=\mathbb{P}(\widehat{Y}=1 \mid Y=y), & \text { E.ODD: } \forall a, y \in\{0,1\} . \\
& \text { E.OPP: } \forall a \in\{0,1\}, y=1
\end{array}
$$

- Our formulation forms a minimax game and produces a parametric exponential family conditional distribution that resembles truncated logistic regression

Robust Log Loss Formulation

- A distributionally robust approach
- Construct predictor robust to worst plausible reality

$$
\min _{\mathbb{P}(\widehat{y} \mid \mathbf{x}) \in \Delta} \max _{\mathbb{Q}(\widehat{y} \mid \mathbf{x}) \in \Delta \cap \Xi}-\sum_{\mathbf{x}, \widehat{y}} \widetilde{P}(\mathbf{x}) \mathbb{Q}(\widehat{y} \mid \mathbf{x}) \log \mathbb{P}(\widehat{y} \mid \mathbf{x})=\max _{\widehat{P}(\widehat{y} \mid \mathbf{x}) \in \Xi} H(\widehat{Y} \mid \mathbf{X})
$$

$$
\text { , subject to: } \Xi:\left\{\mathbb{Q} \mid \mathbb{E}_{\widetilde{P}(\mathbf{x}) ; \mathbb{Q}(\widehat{y} \mid \mathbf{x})}[\phi(\mathbf{X}, \widehat{Y})]=\mathbb{E}_{\widetilde{P}(\mathbf{x}, y)}[\phi(\mathbf{X}, Y)]\right\},
$$

- Reduces to Logistic Regression: $\mathbb{P}(\widehat{y}=1 \mid \mathbf{x})=e^{\theta^{\mathrm{T}} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x})$

Fair Robust Log Loss Formulation

Add fairness constraint to predictor:

$$
\min _{\mathbb{P} \in \Delta \cap \Gamma} \max _{\mathbb{Q} \in \Delta \cap \Xi} \mathbb{E} \underset{\mathbb{P}(\widehat{\mathbf{x}, a, y)}}{ }[-\log \mathbb{P}(\widehat{Y} \mid \mathbf{X}, A, Y)]
$$

The sets of decision functions \mathbb{P} satisfying these fairness constraints are convex and can be defined using linear constraints:

$$
\begin{aligned}
& \Gamma:\left\{\mathbb{P} \left\lvert\, \frac{1}{p_{\gamma_{1}}}\right.\right. \mathbb{E}_{\substack{\widetilde{P}(\mathbf{x}, a, y) \\
\mathbb{P}(\widehat{\mathbf{x}}, a, y)}}\left[\mathbb{I}\left(\widehat{Y}=1 \wedge \gamma_{1}(A, Y)\right)\right] \\
&\left.\quad=\frac{1}{p_{\gamma_{0}}} \mathbb{E} \underset{\mathbb{P}(\widehat{\mathbf{x}, a, y)}}{ }\left[\mathbb{I}\left(\widehat{Y}=1 \wedge \gamma_{0}(A, Y)\right)\right]\right\}
\end{aligned}
$$

- γ_{1} and γ_{0} denote some combination of group membership and ground truth.
- $p_{\gamma_{1}}$ and $p_{\gamma_{0}}$ denote the empirical frequencies of γ_{1} and $\gamma_{0}: p_{\gamma_{i}}=$ $\mathbb{E}_{\widetilde{P}(a, y)}\left[\gamma_{i}(A, Y)\right]$.
- We specify γ_{1} and γ_{0} for each fairness constraints as:

$$
\begin{align*}
& \Gamma_{\mathrm{dp}} \Longleftrightarrow \gamma_{j}(A, Y)=\mathbb{I}(A=j) \tag{1}\\
& \Gamma_{\mathrm{e} . \mathrm{opp}} \Longleftrightarrow \gamma_{j}(A, Y)=\mathbb{I}(A=j \wedge Y=1) \tag{2}\\
& \Gamma_{\text {e.odd }} \Longleftrightarrow \gamma_{j}(A, Y)=\left[\begin{array}{l}
\mathbb{I}(A=j \wedge Y=1) \\
\mathbb{I}(A=j \wedge Y=0)
\end{array}\right] \tag{3}
\end{align*}
$$

with Lagrange multipliers θ for moment matching and λ for fairness constraints, respectively, and n samples in the dataset. The parametric distribution of \mathbb{P} is:

$$
\mathbb{P}_{\theta, \lambda}(\widehat{y}=1 \mid \mathbf{x}, a, y)= \begin{cases}\min \left\{e^{\theta^{\top} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x}), \frac{p_{\gamma_{1}}}{\lambda}\right\} & \text { if } \gamma_{1}(a, y) \wedge \lambda>0 \\ \max \left\{e^{\theta^{\top} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x}), 1-\frac{p_{\gamma_{0}}}{\lambda}\right\} & \text { if } \gamma_{0}(a, y) \wedge \lambda>0 \\ \max \left\{e^{\theta^{\top} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x}), 1+\frac{p_{\gamma_{1}}}{\lambda}\right\} & \text { if } \gamma_{1}(a, y) \wedge \lambda<0 \\ \min \left\{e^{\theta^{\top} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x}),-\frac{p_{\gamma_{0}}}{\lambda}\right\} & \text { if } \gamma_{0}(a, y) \wedge \lambda<0 \\ e^{\theta^{\top} \phi(\mathbf{x}, 1)} / Z_{\theta}(\mathbf{x}) & \text { otherwise },\end{cases}
$$

where $Z_{\theta}(\mathbf{x})=e^{\theta^{\top} \phi(\mathbf{x}, 1)}+e^{\theta^{\top} \phi(\mathbf{x}, 0)}$ is the normalization constant.

- Jointly optimize λ and θ.
- Given θ we find optimal λ^{*} (the threshold) in $O(n \log n)$ over n-sample batch.
- Given λ^{*} the objective is convex w.r.t $\theta \rightarrow$ employ batch gradient decent.

Analysis

- Provides a monotonic and parametric transformation of probabilities.

Figure 1. Contrast the relationship between predictor (\mathbb{P}) and approximator's (\mathbb{Q}) parametric distributions in our method (left) and the post-processing (Hardt et al. 2016) transformation of logistic regression prediction (right)
$\mathbb{P}(\widehat{Y}=1 \mid A=1)$
$\mathbb{P}(\widehat{Y}=1 \mid A=0)$

Figure 2. Experimental results on a synthetic dataset with: a heatmap indicating the predictive probabilities of our approach, along with decision and threshold boundaries; and the unfair logistic regression decision boundary.

- Our method reside in Pareto optimal set: none of the other baselines are significantly better than our method on both error and fairness violation. - Order of magnitude improvement in running time compared to reductionbased approach methods of Agrawal et al. 2018 and covariance-proxy approach of Zafar et al. 2017.

Acknowledgment: This work was supported, in part, by the National Science Foundation under Grant No. 1652530 and by the Future of Life Institute (futureoflife.org) FLI-RFP-AI1 program.

