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Abstract. While conventional ranking systems focus solely on maxi-
mizing the utility of the ranked items to users, fairness-aware ranking
systems additionally try to balance the exposure based on different pro-
tected attributes such as gender or race. To achieve this type of group
fairness for ranking, we derive a new ranking system from the first princi-
ples of distributional robustness. We formulate a minimax game between
a player choosing a distribution over rankings to maximize utility while
satisfying fairness constraints against an adversary seeking to minimize
utility while matching statistics of the training data. Rather than max-
imizing utility and fairness for the specific training data, this approach
efficiently produces robust utility and fairness for a much broader family
of distributions of rankings that include the training data. We show that
our approach provides better utility for highly fair rankings than existing
baseline methods.
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1 Introduction

Rankings often have social implications beyond the immediate utility they pro-
vide, since higher rankings provide opportunities for individuals and groups
associated with the ranked items. As a consequence, biases in ranking systems,
whether intentional or not, raise ethical concerns about their long-term economic
and societal harming effect. Rankings that solely maximize utility or relevance
can perpetuate existing societal biases that exist in training data whilst remain-
ing oblivious to the societal detriment they cause by amplifying such biases [21].

Conventional ranking algorithms typically produce rankings to best serve the
interests of those conducting searches by ordering the items by the probability
of relevance so that utility to the users will be maximized [26]. Biased outcomes
drawn by these models negatively impact items in marginalized protected groups
in critical decision making systems such as hiring or housing where items compete
for exposure and being unfair towards one group can lead to winner-takes-all
dynamics that reinforce existing disparities [27].
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Protected group definitions vary between different applications, and can
include characteristics such as race, gender, religion, etc. In group fairness, algo-
rithms divide the population into groups based on the protected attribute and
guarantee the same treatment for members across groups. In ranking, this treat-
ment can be evaluated using statistical metrics defined for measuring fairness.
In this paper, we focus primarily on exposure-based group fairness measures. As
a notable example, demographic parity (DP) in ranking is satisfied if the average
exposure for both groups is equal in the top k ranks. As a motivating example,
in Fig. 1 we consider two rankings based on items’ true relevance and group
membership. As a result of ranking 1, the highest utility is achieved, and fair-
ness is ignored. In contrast, ranking 2 satisfies the demographic parity fairness
constraint while still preserving high utility.

Fig. 1. Ranking 1 ignores fairness
whereas Ranking 2 satisfies the demo-
graphic parity fairness constraint while
only slightly decreasing the utility.

Fair ranking approaches seeking to
provide group fairness properties can be
categorized into post-processing and in-
processing methods. Post-processing tech-
niques are used to re-rank a given high
utility ranking to incorporate fairness con-
straints while seeking to retain high util-
ity [2,27]. These methods assume that
true relevance labels are available and
require other fairness-unaware learning
methods (e.g., regression) to predict the
true labels as a pre-processing step.
Recovering from unfair regression based
rankings in the re-ranking step may not be feasible in some circumstances [30].

The fair ranking problem can also be addressed as an in-processing, learning-
to-rank (LTR) task where the algorithm learns to maximize utility subject to
fairness constraints from training data [28,31]. Our algorithm falls into this cat-
egory. While providing a fairness-utility trade-off, fair LTR approaches need to
be robust to outliers and noisy data. For example, the label of recidivism in
the COMPAS dataset is regarded to be noisy [10]. This makes prediction while
incorporating fairness constraints more difficult. With improved robustness prop-
erties, a fair LTR can achieve better utility for highly fair rankings, which results
in a preferable utility-fairness trade-off.

In this paper, we derive a new LTR system based on the first principles of
distributional robustness to provide both fairness and robustness to label noise.
We formulate a minimax game with the ranker player choosing a distribution
over rankings constrained to satisfy fairness requirements on the training samples
while maximizing utility, and an adversary player choosing a distribution of item
relevancies that minimizes utility while being similar to training data properties.
Rather than narrowly optimizing the rankings for the specific training data, this
approach produces rankings that provide utility and fairness robustly for a family
of distributions that includes the training data.
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We show that our approach is able to trade-off between utility and fairness
much better at high levels of fairness than existing baseline methods. Further-
more, the robustness properties of our approach enable it to outperform existing
baselines in the presence of varying degrees of label noise in the training data.
To the best of our knowledge, this is the first distributionally robust fair LTR
method.

2 Related Works

Fairness in Ranking. We can broadly group existing fair ranking approaches
into various categories based on their notions of fairness. Metric-based works
base their fairness constraints on statistical parity for pairwise ranking across
item groups [1,15,20]. Several works argue that economic opportunities (e.g.,
exposure, clickthroughs, etc.) should be allocated on the basis of merit, not a
winner-take-all strategy [2,9,27]. While our approach falls into this category,
none of the existing techniques utilizes a distributionally robust approach to
derive a fair LTR system like ours. As a result their performance degrades in the
presence of training label noise, as we will show in our experiments.

There have also been recent studies that focus on other aspects of fair rank-
ing. Several works have looked at fair ranking in the presence of noisy protected
attributes [19]. Another line of research aims to select individuals distributed
across different groups fairly when there is implicit group bias [6,16]. Recent
studies have also investigated how uncertainty about protected attributes, labels,
and other features of the machine learning model affect its fairness proper-
ties [12,22]. Contrary to this line of work, [29] takes into account the presence
of uncertainty when estimating merits and defining a corresponding merit-based
notion of fairness.

3 Preliminary

3.1 Probabilistic Ranking

To formulate the ranking task, we consider a dataset of ranking problems D =
{Ri}N

i=1 for N different queries, where each Ri = {dj}M
j=1 is a candidate item

set of size M for a single query. For every item dj in this set, we denote rel(dj)
as its corresponding relevance judgment. We denote the utility of a ranking
(permutation) π for a single query as Util(π). The optimization problem can
be written as: π∗ = argmaxπ∈Πfair

Util(π). Utility measures used for rankings
are based on the relevance of the individual items being ranked for a particular
ranking problem, R|query = {dj}M

j=1. For example, the Discounted Cumulative
Gain (DCG) [14], which is a common evaluation measure for ranking systems
that discounts the utility for lower-ranked items,

DCG(π) =
∑

dj∈R

2rel(dj) − 1

log(1 + πj)
⇒ Util(π) =

M∑

j=1

ujvπj , (1)
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is a member of the more general family of linear utility functions uj = 2rel(dj)−1
representing the utility of a single item dj based on its relevance rel(.) and
vk = 1

log(1+k) providing the degree of attention that item dj receives by being
placed at rank k by permutation π, i.e., πdj

= k.
The space of all permutations of items is exponential in the number of items,

making näıve methods that find a utility-maximizing ranking subject to fairness
constraints intractable. To overcome this problem, we consider a probabilistic
ranking in which instead of a single ranking, a distribution over rankings is
used. We define the probability of positioning item dj at rank k as Pj,k. Then P
constructs a doubly stochastic matrix of size M×M where entries in each row and
each column must sum up to 1. By employing the idea of probabilistic ranking,
we express the ranking utility in (1) as an expected utility of a probabilistic
ranking:

U(P) =

M∑

j=1

M∑

k=1

Pj,k uj vk = uTPv, (2)

which we equivalently express in a vectorized format where u and v are both
column vectors of size M . Following [27], the fair ranking optimization can be
expressed as a linear programming problem:

max
P∈Δ∩Γfair

uTPv where: Δ : P1 = P�1 = 1, Pj,k ≥ 0, ∀1≤j,k≤M (3)

and Γfair denotes any linear constraint set of the form f�Pg = h. Choosing
f as the utility of items according to groups and g as the exposure of rank-
ing position, enforces equality of exposure across protected groups. In contrast
to [27], which uses this framework to re-rank the items to satisfy fairness con-
straints (i.e., a post-processing method), we extend this linear perspective to
derive a learning-to-rank approach that learns to optimize utility and fairness
simultaneously during training (i.e., an in-processing method).

Demographic parity of exposure, for a set of disjoint group members G1, . . . ,
G|S|, requires that: 1

|Gs|
∑

dj∈Gs

∑M
k=1 Pj,kvk = 1

|Gs′ |
∑

dj∈Gs′

∑M
k=1 Pj,kvk,∀s,

s′ ∈ S.
In this paper, we assume binary groups and construct fj =

1dj∈Gs

|Gs| − 1dj∈G′
s

|G′
s| ,

which makes the constraint f�Pv = 0. For more than two groups, multiple
pairwise constraints of this form can be enforced.

4 Methodology

We adopt a distributionally robust approach to the LTR problem by constructing
a worst-case adversarial distribution on item utilities. We formulate the robust
fair ranking construction as a minimax game between two players: a fair predictor
P that makes a probabilistic prediction over the set of all possible rankings to
maximize expected ranking utility; and an adversary q that approximates a
probability distribution for the utility of items which minimizes the expected
ranking utility. The adversary is additionally constrained to match the feature
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moments of the empirical training distribution. Since we solve the problem for
a given query, the query-dependent terms are omitted from the formulation for
simplicity.

In our notation, we represent ranking items d by their feature representation
X ∈ R

M×L as a matrix of M items with L features. For a given item set X, the
expected ranking utility of a probabilistic ranking P against a utility distribution
q can be expressed as:

U(X,P,q) =
M∑

j=1

Euj |x∼q

[

ujEπj |X∼P

[
vπj

]
]

. (4)

Then, the utility-maximizing optimization problem under fairness constraints
can be formulated as:

Definition 1. Given a training dataset of N ranking problems D =
{(Xi,ui)}N

i=1, with u ∈ R
M being the true relevance and X ∈ R

M×L the fea-
ture representation of ranking problem of size M . The fair probabilistic ranking
P(π) ∈ R

M×M in adversarial learning-to-rank learns a fair ranking that max-
imizes the worst-case ranking utility approximated by an adversary q(ǔ), con-
strained to match the feature statistics of the training data.

max
P(π|X)∈Δ∩Γfair

min
q(ǔ|X)

EX∼ ˜P [U(X,P,q)] (5)

s.t. EX∼P̃

⎡

⎣
M∑

j=1

Eǔj |X∼q [ǔjXj,:]

⎤

⎦ = EX,u∼ ˜P

⎡

⎣
M∑

j=1

ujXj,:

⎤

⎦ (6)

where P̃ denotes the empirical distribution over ranking dataset D =
{(Xi,ui)}N

i=1, ǔ denotes the random variable for adversary relevance, and Δ
denotes the set of doubly stochastic matrices.

This general adversarial formulation plays a foundational role in constructing
probability models and prediction techniques [11,13]. This approach has been
utilized to provide fair and robust predictions under covariate shift [25] as well as
for constructing reliable predictors for fair log loss classification [24]. Similar to
this line of work, our proposed approach imposes fairness constraints on predictor
P. Our formulation in Definition 1 accepts generic utility values. In our paper, we
focus on binary utility, which is one of the common applications of the ranking
problem, where the utility label indicates if a particular item is relevant or not.
For the binary utility problem, the expected utility can be further simplified as:

U(X,P,q) =

M
∑

j=1

Euj |X∼q

[

ujEπj |X∼P

[

vπj

]

]

=

M
∑

j=1

M
∑

k=1

q(uj = 1|X)P(πj = k|X)vk = q
�
Pv,

where the entries in the vector q contains the relevance probability of item dj . In
the following sections, we use this vector notation to simplify the optimization
formulation.
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5 Optimization

We solve the constrained minimax formulation in Definition 1 in Lagrangian dual
form, where we optimize the dual parameters θ ∈ R

L×1 for the feature match-
ing constraint of L features by gradient descent. Rewriting the optimization in
matrix notation yields:

max
θ

Ex,u∼ ˜P

[

max
P∈Δ

min
0≤q≤1

q�Pv +
〈
q − u,

∑

l
θlX:,l

〉 ]

s.t. f�Pv=0, (7)

where: P(π) ∈ R
M×M is a doubly stochastic matrix, and the value of cell Pj,k

represents the probability that πj = k; u ∈ R
M×1 is a vector of true labels

whose jth values is 1 when the item j is relevant to the query, i.e., uj = 1 and
0 otherwise; q ∈ R

M×1 is a probability vector of the adversary’s estimation of
each item being relevant; X:,l ∈ R

M×1 denotes the lth feature of M samples;
S is the set of protected attributes; and v ∈ R

M×1 is a vector containing the
values of position bias function for each position. To denote the Frobenius inner
product between two matrices 〈., .〉 is used, i.e., 〈A,B〉 =

∑
i,j Ai,jBi,j .

For optimization purposes, using strong duality, we push the maximization
over q to the outermost level in (7). Since the objective is non-smooth, for both
P and q, we add strongly convex prox-functions to make the objective smooth.
Furthermore, to make our approach handle feature sampling error, we add a
regularization penalty to the parameter θ. To apply (7) on training data, we
replace empirical expectation with an average over all training samples. The
new formulation is as follows:

min
{0≤qi≤1}N

i=1

max
θ

1
N

N∑

i=1

max
Pi∈Δ

[

qi�
Pivi −

〈
qi − ui,

∑

l
θlXi

:,l

〉

+ λf i�
Pivi − μ

2

∥
∥Pi

∥
∥2

F
+

μ

2

∥
∥qi

∥
∥2

2

]

− γ

2
‖θ‖22 , (8)

where superscript i is the ith sample from N ranking problems in the training
set. We denote λ, γ and μ as the fairness penalty parameter (which can be
adjusted to obtain different trade-offs between fairness and utility, rather than
strictly optimized), a regularization penalty parameter and a smoothing penalty
parameter, respectively. The inner minimization over P and θ can be solved
separately, given a fixed q. The minimization over θ has a closed-form solution
where the lth element of θ∗ is:

θ∗
l = − 1

γN

N∑

i=1

〈
qi − ui,Xi

:,l

〉
. (9)

Independently from θ, we can solve the inner minimization over P for every
training sample using a projection technique. The optimal P for ith training
sample (i.e., Pi∗

) is:
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Pi∗
= argmax

Pi∈Δ

qi�
Pivi + λf i�

Pivi − μ

2

∥∥∥Pi
∥∥∥
2

F

Pi∗
= argmin

Pi∈Δ

μ

2

∥∥∥∥P
i − 1

μ
(qi + λf i)vi�

∥∥∥∥
2

F

− 1

2μ

∥∥∥qivi�∥∥∥
2

F
. (10)

As derived in (10), the minimization takes the form of minP≥0 ‖P − R‖2F ,
and we can interpret this minimization as projecting matrix 1

μ (qi + λf)vi�
into

the set of doubly-stochastic matrices. The projection from an arbitrary matrix
R to the set of doubly-stochastic matrices can be solved using the ADMM pro-
jection algorithm [3]. Since each entry in q represents a probability, the outer
optimization over q is solved using the L-BFGS-B algorithm with a bounded
constraint of the probability simplex [4]. The algorithm optimizes the quadratic
approximation of the objective function (using limited memory Quasi-Newton)
on the convex set with each iteration. In each update step, a projection to the
probability simplex is needed. Based on the above optimization, the adversary’s
optimal relevance probability q∗ can be obtained. Following (9) we compute the
θ∗ over the optimal q∗. Algorithm 1 shows the steps for training.

5.1 Inference and Runtime Analysis

For prediction, we use θ and μ learned from training data while performing
the optimization in (8). After removing the constant terms, we solve a similar
optimization problem for test data. That is:

Algorithm 1: The Fair-Robust LTR
Input: Training dataset D = {(Xi,ui)}N

i=1, fairness penalty parameter λ.
Output: θ∗,P∗,q∗

q ← random initialization;
repeat

update θ by (9) with q.
update P by (10) with q.
update q by (8) with {P, θ}.

until convergence;

min
{0≤qi≤1}Ntest

i=1

1

Ntest

Ntest
∑

i=1

max
Pi∈Δ

[

q
i�

P
i
v

i −
〈

q
i
,
∑

l
θ

∗
l X

i
:,l

〉

+ λP
i
v

i − μ

2

∥

∥

∥P
i
∥

∥

∥

2

F
+

μ

2

∥

∥

∥q
i
∥

∥

∥

2

2

]

,

where superscript i pertains to the ith ranking problem in the test set of size
N test. We follow the steps for solving the optimization in training. There is no
gradient learning of θ as in training, and true relevance labels (u) are not used
in inference. After convergence, we use the resulting P∗ from the optimization
to predict the ranking of items in the test set. We employ the Hungarian algo-
rithm [17] to solve the problem of matching items to positions.
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Runtime Analysis. Solving optimization in (8) involves running a projected
gradient descent algorithm. In each iteration, it requires the computation of the
gradient and the projection to box constraints. The box constraint projection’s
runtime is linear in terms of the number of variables, hence costing O(NM). The
gradient computation requires solving for θ∗, which costs O(NML) from the
dot product computations; and solving for P∗, which can be posed as a doubly-
stochastic matrix projection. We employ an ADMM algorithm to perform the
projection to doubly stochastic matrix, which has linear convergence due to the
strong convexity of the objective [7]. Each step inside the ADMM consists of M
projections to M -element simplex, hence costing O(M2) computations in total.

6 Experiments

In order to compare our proposed framework with existing fair LTR solutions,
we use simulated and real-world datasets to carry out in-depth empirical eval-
uations. The learning task is to determine the feature function in the training
based on the items’ ground truth utilities and fairness constraints. At testing
time, this feature function coupled with a penalty for fairness violation is used
to determine the ranking for the items in the test set with maximum utility while
satisfying fairness constraints.

6.1 Fairness Benchmark Datasets

Setup. We follow steps discussed in [28] to adapt German, Adult and COM-
PAS datasets to a LTR task. These datasets are inherently biased, making
them viable alternatives for evaluation when no real world datasets exist for
a fair LTR task. First, we split each dataset randomly into a disjoint train
and test set. Then from each train/test set we construct a corresponding LTR
train/test set. For each query, we sample randomly with replacement a set
of 10 candidates each, representative of both relevant and irrelevant items,
where on average four individuals are relevant. Each individual in the can-
didate set is a member of a group Gs based on its protected attribute. The
training data consists of 500 ranking problems. We evaluate our learned model
on 100 separate ranking problems serving as the test set. We repeat this pro-
cess 10 times and report the 95% confidence interval in the results. The reg-
ularization constant γ and smoothing penalty parameter μ in (8) are cho-
sen by 3-fold cross validation. We describe datasets used in our experiments:

Table 1. Dataset characteristics.

Dataset n Features Attribute

Adult 45,222 12 Gender

COMPAS 6,167 10 Race

German 1,000 20 Gender

– UCI Adult, census income dataset [8].
The goal is to predict whether income
is above $50K/yr on the basis of census
results.

– The COMPAS criminal recidivism risk
assessment dataset [18] is designed to
predict whether a defendant is likely to
reoffend based on criminal history.
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– UCI German dataset [8]. Based on personal information and credit history,
the goal is to classify good and bad credit.

Table 1 shows the statistics of each dataset with their protected attributes.

Baseline Methods. To evaluate the performance of our model, we compare it
against three different baselines that have similarities to and differences from our
model: FAIR-PGRank [28] and DELTR [31] are in-processing, LTR methods,
like ours; the Post-Processing method of [27] employs the fairness constraint
formulation that we build our optimization framework based on. We also add
a Random baseline that ranks items in each query randomly to give context to
NDCG. We discuss baseline methods in more details1:

– Post Processing (Post-Proc) [27] To make a fair comparison with LTR
approaches, we first learn a linear regression model using all query-item sets
in the training data and predict the relevance of an item to a query in test
set. Then, these estimated relevances are used as input to the linear program
optimization described in [27] with a demographic parity constraint.

– Fair Policy Ranking (Fair-PGRank) [28] An end-to-end, in-processing
LTR approach that uses a policy gradient method, directly optimizing for
both utility and fairness measures.

– Reducing Disparate Exposure (DELTR) [31] An in-processing LTR
method optimizing a weighted sum of a loss function and a fairness crite-
rion. The loss function is a cross entropy designed for ranking [5] and fairness
objective is a squared hinge loss based on disparate exposure.

Evaluation Metrics. We use the normalized discounted cumulative gain
(NDCG) [14], as the utility measure. This is defined as: NDCG(π) = DCG(π)/Z,
where Z is the DCG for ideal ranking and is used to normalize the ranking so
that a perfect ranking would give a NDCG score of 1.

For the fairness evaluation in our approach we use demographic parity as our
fairness violation metric which is based on disparity of average exposure across
two groups:

D̂group(P) = |Ex(G0|P) − Ex(G1|P)|. (11)

Results. Figure 2 shows the performance of our model (Fair-Robust) against
baselines on the three benchmark datasets. We observe a trade-off between fair-
ness and utility in both Fair-PGRank and Fair-Robust, i.e., as we increase
the fairness penalty parameter (λ), demographic parity difference (as a measure
of fairness violation) and NDCG both drop. While DELTR and Post-Proc
achieve comparable NDCG when λ = 0, they fail to satisfy demographic parity

1 We use the implementation from https://github.com/ashudeep/Fair-PGRank for all
baselines.

https://github.com/ashudeep/Fair-PGRank
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Fig. 2. Average NDCG versus average difference of demographic parity (DP) on test
samples, for increasing degrees of fairness penalty λ in each method. Fair-Robust:
λ ∈ [0, 20], Fair-PGRank: λ ∈ [0, 20], DELTR: λ ∈ [0, 106], Post-Proc: λ ∈ [0, 0.2].

as we increase λ and are unable to provide a sufficient utility-fairness trade-off
when high levels of fairness are desired.

In all three datasets, Fair-Robust outperforms Fair-PGRank in terms of
ranking utility when fairness is a priority. When comparing the utility-fairness
trade-off between the two approaches, we observe that Fair-Robust can retain
higher NDCG in high levels of fairness and provides a preferable trade-off. One
notable point is that, even in a noisy dataset like the COMPAS dataset, our app-
roach performs better than other methods due to its robustness.

Robustness Test. One key benefit of our approach is its robustness to label
noise in the learning process. This allows our method can be trained on data
with noisy labels and outliers, and still perform well on the test data. To test this
property, we repeat the previous experiment with noise added to the training
data. After sampling rankings for the training and test sets, we randomly flip
x% of the labels in each ranking problem in the training set. In our experiments,
we test various amounts of noise in the training data where x can be 20%, 30%,
or 40%. Figure 3 shows the results for robustness test. Similar to the previous
experiment, we observe a trade-off between fairness and utility for Fair-Robust.
As the amount of the noise increases Fair-PGRank performs poorly and can’t
maintain its trade-off. Note that when λ = 0, Fair-PGRank still performs well
but for other values of λ its NDCG gets close to random ranking.
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Fig. 3. Robustness test on German, Adult and COMPAS datasets with varying degrees of
noise in the training data.

6.2 Microsoft Learning to Rank Dataset

Fig. 4. NDCG versus differ-
ence of demographic parity for
increasing degrees of fairness
penalty λ in each method.

Setup. In the previous experiments, we used
datasets with inherent demographic biases but
the LTR tasks were simulated and constructed
from a classification task. In this experiment, we
evaluate its performance on Microsoft’s Learning
to Rank dataset [23] which is a real world LTR
dataset. We follow the steps discribed in [30] to
pre-process the dataset. We compare our method
to Fair-PGRank, as both methods are able to
trade-off between fairness and utility. Addition-
ally, we include a random baseline, which sorts
each item in a query randomly, to give context
to NDCG. Similar to the previous experiments,
we use NDCG as the utility measure and demo-
graphic parity as our fairness violation metric, which is based on the disparity
of average exposure across two groups.

Results. Figure 4 shows the fairness and accuracy trade-off on the test set.
With large fairness regularization, Fair-PGRank drops below a random rank-
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ing in terms of NDCG, making it inconsistant. This plot shows that Fair-
Robust smoothly trades-off group fairness for NDCG. Fair-PGRank’s NDCG
and group exposure, on the other hand, deteriorate for increasing regularization
strength, as [30] also observed.

7 Conclusions

In this paper, we developed a new LTR system that achieves fairness of exposure
for protected groups while maximizing utility to the users. We show that our
method is able to trade-off between utility and fairness much better at high lev-
els of fairness than existing baseline methods. Our work addresses the problem
of providing more robust fairness given a chosen fairness criterion, but does not
answer the broader question of which fairness criterion is appropriate for a par-
ticular ranking application. More extensive evaluations based on incorporating
other fairness metrics, such as disparate treatment, and generalization of this
approach beyond binary utility are two important future directions.
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