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Introduction
• We re-derive a new classifier from the first principles of distributional ro-
bustness that incorporates group fairness criteria into a worst-case logarith-
mic loss minimization.
• Given population distribution (X, A, Y ) ∼ P with a protected attribute A
and a decision variable Ŷ . A classifier P satisfies group fairness constraints when:

− Demographic Parity (DP): P(Ŷ =1|A=a) = P(Ŷ =1) ∀a ∈ {0, 1}
− Equalized Odds (E.ODD) and Equalized Opportunity (E.OPP):

P(Ŷ =1|A=a, Y =y) = P(Ŷ =1|Y =y), E.ODD: ∀a, y ∈ {0, 1}.
E.OPP: ∀a ∈ {0, 1}, y = 1.

• Our formulation forms a minimax game and produces a parametric exponen-
tial family conditional distribution that resembles truncated logistic regres-
sion.

Robust Log Loss Formulation
• A distributionally robust approach
• Construct predictor robust to worst plausible reality

min
P(ŷ|x)∈∆

max
Q(ŷ|x)∈∆∩Ξ

−
∑
x,ŷ

P̃ (x)Q(ŷ|x) logP(ŷ|x) = max
P̂ (ŷ|x)∈Ξ

H(Ŷ |X)

, subject to: Ξ :
{
Q | EP̃ (x);Q(ŷ|x)[φ(X, Ŷ )] = EP̃ (x,y) [φ(X, Y )]

}
,

• Reduces to Logistic Regression : P(ŷ = 1|x) = eθ
Tφ(x,1)/Zθ(x)

Fair Robust Log Loss Formulation
Add fairness constraint to predictor:

min
P∈∆∩ Γ

max
Q∈∆∩Ξ

E P̃ (x,a,y)
Q(ŷ|x,a,y)

[
− logP(Ŷ |X, A, Y )

]
.

The sets of decision functions P satisfying these fairness constraints are
convex and can be defined using linear constraints:

Γ :
{
P | 1

pγ1
E P̃ (x,a,y)
P(ŷ|x,a,y)

[I(Ŷ =1 ∧ γ1(A, Y ))]

= 1
pγ0

E P̃ (x,a,y)
P(ŷ|x,a,y)

[I(Ŷ =1 ∧ γ0(A, Y ))]
}
,

• γ1 and γ0 denote some combination of group membership and ground-
truth.
• pγ1 and pγ0 denote the empirical frequencies of γ1 and γ0: pγi =
EP̃ (a,y)[γi(A, Y )].
• We specify γ1 and γ0 for each fairness constraints as:

Γdp ⇐⇒ γj(A, Y ) = I(A = j); (1)
Γe.opp ⇐⇒ γj(A, Y ) = I(A = j ∧ Y = 1); (2)

Γe.odd ⇐⇒ γj(A, Y ) =

[
I(A = j ∧ Y = 1)
I(A = j ∧ Y = 0)

]
. (3)

with Lagrange multipliers θ for moment matching and λ for fairness
constraints, respectively, and n samples in the dataset. The parametric
distribution of P is:

Pθ,λ(ŷ = 1|x, a, y) =



min
{
eθ

>φ(x,1)/Zθ(x),
pγ1
λ

}
if γ1(a, y) ∧ λ > 0

max
{
eθ

>φ(x,1)/Zθ(x), 1−
pγ0
λ

}
if γ0(a, y) ∧ λ > 0

max
{
eθ

>φ(x,1)/Zθ(x), 1+
pγ1
λ

}
if γ1(a, y) ∧ λ < 0

min
{
eθ

>φ(x,1)/Zθ(x),−
pγ0
λ

}
if γ0(a, y) ∧ λ < 0

eθ
>φ(x,1)/Zθ(x) otherwise,

where Zθ(x) = eθ
>φ(x,1) + eθ

>φ(x,0) is the normalization constant.
• Jointly optimize λ and θ.
• Given θ we find optimal λ∗ (the threshold) in O(n log n) over n-sample
batch.
• Given λ∗ the objective is convex w.r.t θ→ employ batch gradient decent.

Analysis
• Provides a monotonic and parametric transformation of probabilities.
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Pθ(Ŷ = 1|x, a, y) Ppost(Ŷ = 1|x, a)
Figure 1. Contrast the relationship between predictor (P) and approximator’s

(Q) parametric distributions in our method (left) and the post-processing
(Hardt et al. 2016) transformation of logistic regression prediction (right).
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Figure 2. Experimental results on a synthetic dataset with: a heatmap in-
dicating the predictive probabilities of our approach, along with decision and
threshold boundaries; and the unfair logistic regression decision boundary.
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• Our method reside in Pareto optimal set: none of the other baselines are
significantly better than our method on both error and fairness violation.
•Order of magnitude improvement in running time compared to reduction-
based approach methods of Agrawal et al. 2018 and covariance-proxy
approach of Zafar et al. 2017.
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