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Motivation Subdominance Minimization Experiments
. : R A policy is y-superhuman if it has smaller metrics f. We create 50 synthetic demonstrations using post-processing fairness method (Hardt
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difficult'g P P P y ' o ® f,. ... than y% of human demonstrations et al. 2016) fé)r demographic parity. Then weI train our model to chlj 0 hand ahthat
- | minimize the Subdominance value. We use a logistic regression model with weights 6
e Multiple fairness metrics [dp, eqodds, eqopp, prp, ...] _ Subdominance measures how far a policy is from as our decision model. We perform experiments on Adult and COMPAS datasets.
e One (or more) predictive performance metrics [acc, f-meas, ...] 3 SEEEE '@ superhuman by Some margins, bounding the —+— fair_logloss_eqodds e post_proc_eqodds ¢ MFOpt e superhuman_train
To produce desirable decisions on actual data. fine tuning any hand- = &--=-- ——— - Superhuman percentlle. —+— fair_logloss_dp e post_proc_dp post_proc_demos # superhuman_test
specified trade-off is often required. ® Minimum Subdominance Inverse Optimal Control . Adult — What Metrics to use: Three Conflicting Fairness
[4] seeks policies on the Pareto frontier minimizing it g 3 maii | Measures (Impossibility Theorem)
Ht_Jman decisions (i.e., reference deC|S|ons_) are often available, but the f, 5 00 5 s S | (In)Accuracy + [Demographic Parity, Equalized
fairness trade-offs they are based on are typically unknown. _ | c ot ; Odds, Predictive Rate Parity]
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A new fairness question: Can algorithmic decisions be produced that all reference decisions (human demonstration) y = {%; j—1 and & A | | pproach Outp . .
_ : _ _ _ del dicti ~ _ [~ M . d as: 02p ] Yo shows competitive performance with baselines.
stakeholders with different notions of fairness and desired model predictions 'y = {yj j=1 IS measured as. e .
performance-fairness trade-offs prefer over human decisions? k /A~ ~ A A ~ B
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Our approach: seek decisions that outperform reference human decisions The subdominance for decision vector Y with respect to the set of Adult Adult.
across all fairness/performance metrics of interest. demonstrations (N vectors of reference decisions) aggregated over k measure ) S i | [o e
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Superhuman disparity values defining the sets of 100%-, The minimally subdominant fairness-aware classifier P9 has model parameters xy e L N N IR
67%-, and 33%-superhuman fairness- 0 Chosen by 0.00 0.05 0.1 D_E;?)ddsl 25 : 0.10 0.15 0.20 0.25 OS(_)PRT:S 0.40 0.45 0.50
Ee:fc;;rr;zi)nr:‘?n;/slcuees (red shades) based on argmin min 4:$r|X~P9 [subdoma (y’ y7 Yy, a)] + )\Haul As we increase noise in the label and the protected attribute of reference decisions
are ' 6 a~0 produced by post-processing (left) and fair-logloss (right) our approach achieves higher
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Why not elicit preferences [1]? Multiple stakeholders often influence We use policy gradient to obtain 6 : £ oo £
decisions, and eliciting their preferences does not resolve how ) Lk (3,9.7.2) R Q 3 06l
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Why not use inverse reinforcement learning methods [2, 3] (i.e., feature- _ _ 1 | 000 o6z o004 ote o8 ou0 000 001 002 003 004 005 006 007 008
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matching)? Noise in the reference decisions can make estimating | N m
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