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SUMMARY

Developing machine learning methods with high accuracy that also avoid unfair treatment

of different groups has become increasingly important for data-driven decision making in social

applications. This thesis presents the development of fair machine learning algorithms through

two main paradigms. Firstly, we leverage the distributionally robust framework to develop fair

algorithms for classification and ranking. Specifically, we propose novel approaches that minimize

disparities across different groups while preserving overall classification or ranking performance.

Secondly, we introduce a specification-robust approach to fair classification, inspired by the

ideas from imitation learning.

Supervised learning often relies on Empirical Risk Minimization (ERM) (Vapnik, 1992) to

train models that can generalize well to unseen data. However, ERM methods are susceptible to

noise and outliers due to their dependence on sample means. To address this issue, adversarial

robust learning (Asif et al., 2015) has emerged as a promising approach, formulating supervised

learning as a minimax game between a predictor and an adversary. This thesis investigates how

this framework can be applied to fair machine learning tasks and propose two approaches for

xv



SUMMARY (Continued)

fair classification: fair and robust log loss classification (Rezaei et al., 2020) and fair and robust

log loss classification under covariate shift (Rezaei et al., 2021).

Furthermore, this thesis leverages adversarial robust learning in developing fair and robust

models for structured prediction problems, where the goal is to predict a ranking of items or

outputs rather than a single label. It introduces a fair and robust learning-to-rank approach

(Memarrast et al., 2023a) that achieves fairness of exposure for protected groups (such as race

or gender) while maximizing utility to the users. Overall, this thesis explores the potential of

adversarial robust learning for addressing fairness in structured prediction tasks and provides

new approaches to building fair and robust machine learning models.

The second part of this thesis discusses the specification-robust approach to fairness in machine

learning. While most fairness approaches optimize a specified trade-off between performance

measures (such as accuracy, log loss, or AUC) and fairness metrics (such as demographic parity

or equalized odds), this begs the question of whether the right trade-offs are being specified.

To address this issue, this thesis proposes a new approach called superhuman fairness

(Memarrast et al., 2023b) which recasts fair machine learning as an imitation learning task.

Superhuman fairness seeks to simultaneously outperform human decisions on multiple predictive

performance and fairness measures, rather than relying on a pre-specified trade-off. The thesis

demonstrates the benefits of this approach given suboptimal decisions, showing that it can

improve both performance and fairness outcomes.

Finally, we outline further directions of our ongoing and future research.

xvi



CHAPTER 1

Introduction

Machine learning algorithms aim at optimizing performance metrics that measure success

according to classification accuracy, precision, F-measure, etc. Unfortunately, there are other

priorities, concerns, or ethical assumptions that these models ignore in practice, and can be

totally violated as a result. Over the last few years, there has been a surge in interest in the

fairness and privacy properties of machine learning algorithms, with important implications

for practitioners. Social aspects of the contexts in which machine learning algorithms are

deployed tend to influence priorities, and fairness properties are a prime example. There are

certain demographic groups to which we prefer to extend equal treatment. In a similar vein,

we would like some guarantee that individuals with similar characteristics on some dimensions

get the same treatment regardless of differences in other characteristics. In certain decision-

making applications, this may be preferable or even required by law e.g., admissions decisions

1
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for universities (Lowry and Macpherson, 1988; Chang, 2006; Kabakchieva, 2013), decisions

regarding employment and promotions (Lohr, 2013), medical decisions for insurers and hospitals

(Shipp et al., 2002; Obermeyer and Emanuel, 2016), sentencing guidelines for civil and criminal

cases within the justice system (Moses and Chan, 2014; O’Neil, 2016), the financial industry’s

loan decision-making process (Shaw and Gentry, 1988; Carter and Catlett, 1987; Bose and

Mahapatra, 2001), as well as in a variety of other applications.

The design of machine learning systems now emphasizes equitable behavior, despite existing

disparities in the data. Gender imbalances and other disparities may stem from historical

discrimination or inherent differences in characteristics. Even non-personal data can be influenced

by demographic disparities like income or age when collected by individuals (e.g., smartphones).

Simply omitting protected attributes (race, gender, etc.) is ineffective as they are implicitly

represented by proxy variables (e.g., zip code, personality features). Removing protected

attributes not only fails to prevent discrimination but also complicates bias mitigation through

fair learning methods. These challenges have sparked the emergence of fair machine learning,

which addresses these concerns from various angles and approaches.

1.1 Fairness Criteria

In general, fairness is defined in two categories: group fairness criteria partition the population

into groups, and they use defined statistical measures to ensure that members across groups are

treated equally. Individual fairness (Dwork et al., 2012) on the other hand, is the notion that all

individuals should be treated equally regardless of affiliation to a group. There has been extensive

research and discussion regarding acceptable definitions of fairness and their accuracy and effect
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in practice. As the main surveys on algorithms and measures for fairness we refer to (Binns,

2018; Hutchinson and Mitchell, 2019; Verma and Rubin, 2018; Saxena et al., 2019; Mehrabi et

al., 2019). In this thesis, we focus on group fairness and develop algorithms that treat members

across protected groups e.g. race or gender equally. As group fairness constraints, we mainly

focus on demographic parity (Calders et al., 2009), equalized odds, equalized opportunity (Hardt

et al., 2016) and predictive rate parity (Chouldechova, 2017a). In the next chapter, we will

provide formal definitions of fairness measures and illustrate each measure’s satisfaction through

relevant scenarios.

1.2 Distributionally Robust Learning

1.2.1 Empirical Risk Minimization

Empirical Risk Minimization (ERM) (Vapnik, 1992) is a common principle in machine

learning where the goal is to learn models from labeled data that generalize well on unseen data.

The true data distribution is typically unknown, so the error is estimated using the sample

mean error from training samples. ERM selects a hypothesis function from a function class

that minimizes the expected loss on training samples, with regularization used to balance risk

minimization and generalization.

However, ERM has limitations when it comes to optimizing loss functions for fitting a hypoth-

esis function. Many desired performance metrics are discrete, non-convex, and non-continuous,

making them impractical to optimize under ERM (Höffgen and Simon, 1992; Steinwart and

Christmann, 2008). To overcome this, convex loss functions are often used as proxies for the
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desired metrics, resulting in popular machine learning models like logistic regression (Cox, 1958),

support vector machines (SVM) (Cortes and Vapnik, 1995), and conditional random fields (CRF)

(Lafferty et al., 2001a).

While optimizing the surrogate loss indirectly optimizes the original loss, Fisher consistency

guarantees that the learning method with the surrogate loss produces the Bayes optimal classifier.

Probabilistic approaches ensure Fisher consistency but may be less efficient compared to large

margin approaches. Structured SVM (Tsochantaridis et al., 2005) is the only model providing

flexibility in using the desired loss metric but does not guarantee Fisher consistency.

ERM methods also lack robustness against selection bias, perturbations, noise, and outliers in

training data due to their reliance on sample mean error estimation (Christmann and Steinwart,

2004; Minsker and Mathieu, 2019). An alternative approach to ERM is adversarial robust

learning (Topsøe, 1979; Grünwald and Dawid, 2004; Asif et al., 2015), which addresses these

limitations.

1.2.2 Adversarial Robust Learning

Minimizing the average training error through Empirical Risk Minimization (ERM) can

result in absorbing biases and spurious correlations present in the training data (Christmann

and Steinwart, 2004; Minsker and Mathieu, 2019). An alternative to ERM is Distributionally

Robust Learning (DRL) (Ben-Tal et al., 2013), where the model selection involves minimizing

the worst-case expected loss within an ambiguity set of distributions constrained by the training

data distribution. Different approaches define the distribution set using statistical distance

metrics such as f-divergence (Ben-Tal et al., 2013; Namkoong and Duchi, 2016), Wasserstein
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distance (Esfahani and Kuhn, 2018; Shafieezadeh Abadeh et al., 2015), or moment matching

(Delage and Ye, 2010; Zymler et al., 2013).

Adversarial robust learning (Asif et al., 2015) is a recent idea in robust learning that presents

supervised learning as a minimax game between a predictor minimizing expected loss and an

adversary maximizing expected loss under moment matching constraints from empirical data.

This framework has been successfully applied for cost-sensitive classification (Asif et al., 2015),

multi-class zero-one loss (Fathony et al., 2016), ordinal regression (Fathony et al., 2017) and

structured prediction on graphical models (Fathony et al., 2018). This framework not only

guarantees robust properties but also can optimize non-convex loss functions by treating the data

distribution as uncertain. In practice, avoiding the approximation gap between the surrogate and

target loss functions gives further advantages to classification performance. In this thesis, our

focus is on employing the adversarial robust learning framework for probabilistic classification

and structured prediction tasks. We utilize log loss as the performance metric for classification

and NDCG (Normalized Discounted Cumulative Gain) for ranking. Additionally, we aim to

ensure fairness in the predictor within the same conditions.

The first part of this thesis discusses distributionally robust fairness for machine learning. We

first present two fair and robust binary classification techniques that leverage adversarial robust

framework: (1) fair and robust minimizer of the logarithmic loss under iid assumption; and

building upon this approach (2) fair and robust minimizer of the logarithmic loss under covariate

shift. Our approach for constructing the learning algorithms is based on the robust adversarial

formulation (Topsøe, 1979; Grünwald and Dawid, 2004; Delage and Ye, 2010; Asif et al., 2015),
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i.e., by focusing on answering the question: “what predictor best maximizes the performance

metric (or minimizes the loss metric) in the worst case given the statistical summaries of the

empirical distributions and satisfies statistical group fairness constraints?” Next, we utilize

the adversarial robust framework to develop a structured prediction method: fair and robust

learning-to-rank. This approach maximizes the ranking utility and guarantees the fairness of

exposure properties for different groups of items. We also propose ideas for developing a fair

bipartite matching approach for future work by employing the same framework.

1.3 Specification Robust Learning

1.3.1 Performance-Fairness Trade-offs in Fairness Approaches

The social impacts of algorithmic decisions based on machine learning have motivated various

group and individual fairness properties that decisions should ideally satisfy (Calders et al.,

2009; Hardt et al., 2016). Unfortunately, impossibility results prevent multiple common group

fairness properties from being simultaneously satisfied (Kleinberg et al., 2016). Thus, no set

of decisions can be universally fair to all groups and individuals for all notions of fairness.

Instead, specified weightings, or trade-offs, of different criteria are often optimized (Liu and

Vicente, 2022). Identifying an appropriate trade-off to prescribe to these fairness methods is a

daunting task open to application-specific philosophical and ideological debate that could delay

or completely derail the adoption of algorithmic methods.

Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g.,

accuracy, log loss, or AUC) and fairness metric(s) (e.g., demographic parity, equalized odds).
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This frequently creates a meta-optimization problem: which measures and metrics should be

traded off? In the second part of this thesis, rather than seeking a prescriptive answer to this

question (using first principles or preference elicitation), we propose a data-driven approach

seeking superhuman fairness—an amplification of the performance-fairness trade-offs that human

decisions reflect.

1.3.2 Superhuman Fairness

In superhuman fairness, we aim to produce decisions with performance and fairness—

potentially defined using multiple metrics—that are simultaneously better than reference

decisions (e.g., from a human decision-maker or baseline method). We leverage recent ad-

vances in imitation learning to develop theory and algorithms for this task, and experimentally

demonstrate the benefits of our approach when reference decisions are suboptimal. Our approach

extends subdominance minimization inverse optimal control (Ziebart et al., 2022) to the fair

binary classification setting (Memarrast et al., 2023c). This algorithm is flexible enough to

optimize for multiple performance and fairness metrics simultaneously. Through experiments,

we demonstrate its efficiency in reducing multiple fairness criteria while maintaining high

performance.

The second part of this thesis discusses specification-robust fairness for machine learning

where we use subdominance minimization for developing fair machine learning models.
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1.4 Outline of the document

This thesis document is organized into six parts: Introduction; Preliminary and Background;

Distributionally Robust Fair Classification; Fairness for Robust Learning To Rank; Superhuman

Fairness; Conclusion and Future Directions.

Chapter 2 serves as preliminary and background. In this chapter, we present a mathematical

formulation for the adversarial learning framework. We illustrate each fairness measure with a

practical example and then we provide the mathematical definitions for these measures. Finally,

we review the existing fair decision-making approaches in the literature.

Chapter 3 covers two research papers: “Fairness for Robust Log Loss Classification” published

at AAAI Conference on Artificial Intelligence 2020 (Rezaei et al., 2020), and “Robust Fairness

under Covariate Shift” published at AAAI Conference on Artificial Intelligence 2021 (Rezaei

et al., 2021). In this chapter, we address two scenarios where fairness is a critical concern

in machine learning. The first scenario involves robust minimization of the logarithmic loss,

while considering partial knowledge of the conditional label distribution and an empirical group

fairness constraint with known group membership. In the second scenario, we address the

challenge of constructing a fair predictor under covariate shift, where the source and target

distributions differ, but the conditional label distribution remains unchanged. The results from

both scenarios are presented together in this chapter.

Chapter 4 is based on the manuscript titled “Fairness for Robust Learning To Rank” published

at The Pacific-Asia Conference on Knowledge Discovery and Data Mining 2023 (Memarrast

et al., 2023a). In this work, we investigate the problem of bias and unfairness in ranking as a
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structured prediction problem. We develop a new robust learning-to-rank approach that can

provide guarantees for fairness of exposure across groups while maximizing utility to the users.

The proposed approach is able to trade-off between utility and fairness and is robust to outliers

and noisy data.

Chapter 5 is based on a paper titled “Superhuman Fairness” published at the International

Conference on Machine Learning 2023 (Memarrast et al., 2023b). In this chapter, we introduce

superhuman fairness, an approach to fairness-aware classifier construction based on imitation

learning. Our approach avoids explicit performance-fairness trade-off specification or elicitation.

Instead, it seeks to unambiguously outperform human decisions across multiple performance

and fairness measures with maximal frequency.

Chapter 6 concludes this thesis and discusses our ongoing and future research on fairness in

machine learning, particularly in developing a fairness-aware bipartite matching approach. We

use the distributionally robust learning framework to derive a fair and robust predictor for the

maximum bipartite matching task, ensuring fairness constraints across protected groups.



CHAPTER 2

Preliminary and Background

2.1 Distributionally Robust Supervised Learning

Machine-learning algorithms have the potential to assume too much reliance on “accurate,

clean, and well-labeled data” to provide accurate results (Schmelzer, 2019). In recent reports

about AI and Machine Learning projects, about 80% of the time spent on data preparation and

engineering is devoted to these activities (Minsker and Mathieu, 2019). This is one reason why

robust learning is becoming increasingly relevant in practice and has gained much interest in

the research community. In robust learning, the goal is to develop techniques that are relatively

insensitive to outlier data or stochastic data perturbations. Another desirable property of a

robust estimator is that it is efficient when the model assumptions are satisfied, i.e. that the

variance is minimal (Christmann and Steinwart, 2004). Several robust learning models have been

10
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proposed for various uncertainty set definitions based on F-divergence measures (Namkoong and

Duchi, 2016; Namkoong and Duchi, 2017; Hashimoto et al., 2018), moment matching (Livni et al.,

2012; Delage and Ye, 2010), and Wasserstein metric (Shafieezadeh Abadeh et al., 2015; Esfahani

and Kuhn, 2018; Chen and Paschalidis, 2018).

Robust Bayes decision theory (Topsøe, 1979; Grünwald and Dawid, 2004), established the

relation between the maximum entropy and the worst-case expected loss in minimax game

settings, as well as the distributional robustness (Delage and Ye, 2010). Based on this, the

adversarial formulation proposed by (Asif et al., 2015) for robust cost-sensitive classification seeks

out the predictor that minimizes the worst-case expected loss given the statistical characteristics

of the empirical data. This formulation establishes a zero-some game between the predictor

distribution (P) minimizing the expected loss and an adversary distribution (Q) maximizing the

expected loss while being constrained to satisfy the empirical statistics of the training data.

Definition 1. The adversarial formulation for robust supervised learning can be formulated

as:

min
P(ŷ|x)∈∆

max
Q(y̌|x)∈∆∩Ξ

EP̃ (x)P(ŷ|x)Q(y̌|x)[loss(Ŷ , Y̌ )] (2.1)

Ξ :
{
Q | EP̃ (x);Q(ŷ|x)[ϕ(X, Ŷ )] = EP̃ (x,y)

[
ϕ(X, Y )

] }
, (2.2)

where ϕ(.) is a vector-valued feature function and ∆ is the set of conditional probability

simplexes (i.e. P(y|x) ≥ 0,
∑

y P(y|x) = 1,∀x, y).
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Note that the loss function in the above formulation can be any general R|Y |×|Y | cost matrix

(Asif et al., 2015).

Generally, these formulations are solved by Lagrangizing the moment matching constraints Ξ and

solving the dual form by optimizing the dual parameters by convex optimization methods. The

loss function can be non-convex using this approach, as long as the inner minimax problem can

be solved efficiently. There are two ways to solve the inner minimax game – linear programming

(Asif et al., 2015) or double oracles – which relies on finding each player’s best response in

polynomial time (Wang et al., 2015).

2.1.1 Group Fairness Measures in Classification

We must be able to define unfairness before we can detect it in machine learning. We

review the primary definitions of group fairness used in this thesis and explain them with a

practical example (images are adopted from (Landeau, 2020)). We take into account the process

of identifying potential candidates for a job. We will discuss the formal definitions and technical

details for group fairness notions in 2.2. For simplicity, we consider gender (male vs female)

as protected attribute in a binary classification setting where the goal is to recruit qualified

candidates from both genders fairly. We describe scenarios where in each one we have a fair

recruitment process based on a group fairness definition.

2.1.1.1 Demographic Parity

To achieve demographic parity, the distribution of predictions should be the same across

subpopulations. In Figure 1 recruitment process satisfies demographic parity. That is, the
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Actual Class
Males Qualified Unqualified

P
re
d
ic
te
d Recruited 5 1

Not Recruited 4 17

Actual Class
Females Qualified Unqualified

Recruited 1 3
Not Recruited 8 6

Figure 1: Demographic Parity
Percentage of males recruited: 6/27 = 22%
Percentage of females recruited: 4/18 = 22%

number of candidates recruited from each gender is proportional to their population i.e. 0.22 in

this example. Figure 1 also shows the confusion matrix for both groups.

2.1.1.2 Equality of Odds

Regardless of whether an applicant is a male or a female, if the candidate is qualified, he/she

is equally likely to get recruited, and if not he/she is equally likely to get rejected. If this holds

equal odds is satisfied. As shown in Figure 2 the number of candidates recruited from each

gender is proportional to their qualified candidates i.e. 0.22 and the number of candidates not

recruited from each gender is proportional to their unqualified candidates i.e. 0.77. Figure 2

shows the confusion matrix for both groups.
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Actual Class
Males Qualified Unqualified

P
re
d
ic
te
d Recruited 2 4

Not Recruited 7 14

Actual Class
Females Qualified Unqualified

Recruited 2 2
Not Recruited 7 7

Figure 2: Equal Odds
Percentage of qualified males recruited: 2/9 = 22%
Percentage of qualified females recruited: 2/9 = 22%

Percentage of unqualified males not recruited: 14/18 = 77%
Percentage of unqualified females not recruited: 7/9 = 77%

2.1.1.3 Equality of Opportunity

Equality of opportunity is a relaxed version of equality of odds. Equality of opportunity is

achieved by only applying the equality of odds constraint to the true positive rate, ensuring

that each group has the same opportunity of getting recruited. In Figure 3 recruitment process

satisfies equal opportunity. That is, the number of candidates recruited from each gender is

proportional to their qualified candidates i.e. 0.44. Figure 3 also shows the confusion matrix for

both groups.
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Actual Class
Males Qualified Unqualified

P
re
d
ic
te
d Recruited 4 1

Not Recruited 5 17

Actual Class
Females Qualified Unqualified

Recruited 4 1
Not Recruited 5 8

Figure 3: Equal Opportunity
Percentage of qualified males recruited: 4/9 = 44%
Percentage of qualified females recruited: 4/9 = 44%

2.1.1.4 Predictive Rate Parity

Predictive rate parity is achieved by a model when the chances of a positive outcome in the

target variable are the same for all subpopulations, regardless of their predicted positive outcome.

As shown in Figure 4 the number of candidates qualified from each gender is proportional to

their qualified candidates i.e. 0.50 but the number of candidates unqualified from each gender is

not proportional to their not-recruited candidates (0.72 vs 0.50) since it is impossible to satisfy

predictive rate parity in this example. Figure 4 shows the confusion matrix for both groups.
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Actual Class
Males Qualified Unqualified

P
re
d
ic
te
d Recruited 3 3

Not Recruited 6 15

Actual Class
Females Qualified Unqualified

Recruited 2 2
Not Recruited 7 7

Figure 4: Predictive Rate Parity
Percentage of recruited males that are qualified: 3/6 = 50%
Percentage of recruited females that are qualified: 2/4 = 50%

Percentage of not-recruited males that are unqualified: 15/21 = 72%
Percentage of not-recruited females that are unqualified: 7/14 = 50%

2.1.2 Group Fairness Measures in Ranking

Similar to classification there are fairness measures introduced in the literature for structured

prediction tasks. In this thesis, we focus on exposure-based group fairness measures. As a

notable one, demographic parity in ranking is satisfied if average exposure for both groups is

equal in top k ranks. Exposure can be measured by a position bias function that gives higher

values for top ranks. In Table I two rankings are shown, ranking 1 does not satisfy demographic

parity while ranking 2 satisfies this constraint.
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Item m1 m2 m3 m4 m5 m6 m7 f1 f2 f3 m → male

Relevance 1 1 1 1 1 1 0 1 0 0 f → female

Demographic Parity utility
Position 1 2 3 4 5 6 7 8 9 10 violation NDCG

Position bias 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10 ∥Exp(m)− Exp(f)∥ -

Ranking 1 m1 m2 m3 m4 m5 m6 f1 m7 f2 f3 0.25 1.0

Ranking 2 m1 f1 m2 f2 m3 m4 m5 f3 m6 m7 0 0.95

TABLE I: Ranking 1 maximizes utility and is oblivious to fairness constraints.
Ranking 2 maximizes utility while ensuring demographic parity.

2.2 Fairness Measures: Formal Definitions

In 1.1 we discussed the difference between group fairness and individual fairness. Additionally,

in 2.1.1, we looked at practical examples where group fairness constraints are satisfied. In this

section, we review the mathematical definitions for group fairness measures.

For simplicity, we consider a binary decision setting with examples drawn from a distribution:

(X, A, Y ) ∼ P . Here y = 1 is viewed as the “advantaged” class for positive decisions to be

made. The general decision task is to construct a probabilistic mapping, P, for a distribution

over decision variable ŷ ∈ {0, 1} given the feature vector x ∈ X . Each example also possesses

a protected attribute a ∈ {0, 1} that defines membership in one of two groups. We consider

three illustrative examples: admissions to medical school, approval of loans, and prescription

of medical treatment. The relevant variables are defined for these tasks in Table II. Different

forms of fairness may be appropriate in each of these decision tasks.
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Setting ŷ y a
Admissions Admitted Would succeed Sex
Loans Loan approval Would re-pay Age
Treatment Provided Would benefit Race

TABLE II: Variables for three decision-making tasks.

Fairness requires treating the different groups equivalently in various ways. Unfortunately, the

näıve approach of excluding the protected attribute from the decision function, e.g., restricting to

P(ŷ|x), does not guarantee fairness because the protected attribute a may still be inferred from

x (Dwork et al., 2012). Instead of imposing constraints on the predictor’s inputs, definitions of

fairness require statistical properties on its decisions to hold.

If student qualifications for medical school admissions are assumed to be the same across

sexes, ensuring Demographic Parity (2.2.1) (Calders et al., 2009) may be the most appropriate

form of fairness.

Definition 2.2.1. A classifier satisfies Demographic Parity (D.P.) if the output variable Ŷ

is statistically independent of the protected attribute A:

P(Ŷ =1|A=a) = P(Ŷ =1), ∀a ∈ {0, 1}. (2.3)

If default rates for older (Age ≥ 40) and younger (Age < 40) loan applicants differ, providing

the same approval rate to each group (Demographic Parity) may not be desirable. However,

providing the same approval rates to individuals who will repay in each group and the same
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approval rates to individuals who will not repay (Equalized Odds (Hardt et al., 2016)) may be a

desirable fairness guarantee.

Definition 2.2.2. A classifier satisfies Equalized Odds (E.Odd.) if the output variable Ŷ is

conditionally independent of the protected attribute A given the true label Y :

P(Ŷ =1|A=a, Y =y) = P(Ŷ =1|Y =y), ∀y, a ∈ {0, 1}. (2.4)

If there is little benefit from providing a positive decision to a non-advantaged individual,

only imposing the above constraint on a particular label (the advantaged class) may be desirable

(Equalized Opportunity (Hardt et al., 2016)). For example, guaranteeing the same proportion

of people who would benefit from a treatment will receive the treatment in each group may

be desirable without also requiring the same rates for people who would not benefit from the

treatment.

Definition 2.2.3. A classifier satisfies Equalized Opportunity (E.Opp.) if the output

variable Ŷ and protected attribute A are conditionally independent given Y = 1:

P(Ŷ =1|A=a, Y =1) = P(Ŷ =1|Y =1), ∀a ∈ {0, 1}. (2.5)

By switching Ŷ and Y in 2.2.2, we will achieve Predictive Rate Parity, another prominent

fairness metric.
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Definition 2.2.4. A classifier satisfies Predictive Rate Parity (PRP) if the true label Y

is conditionally independent of the protected attribute A given the output variable Ŷ :

P(Y =1|A=a, Ŷ =y) = P(Y =1|Ŷ =y), ∀y, a ∈ {0, 1}. (2.6)

A relaxation of this metric is Positive Predictive Value (PPV) where Ŷ = 1. In this case,

the approval rate needs to have the same precision across groups.

2.3 Existing Fair Decision-Making Methods

2.3.1 Fair Classification Techniques

Techniques for constructing predictors with group fairness properties can be broadly catego-

rized into pre-, post-, and in-processing methods. Most methods take an agnostic approach to

the actual classification method used.

Pre-processing methods such as reweighting and relabeling (Kamiran and Calders, 2012)

transform the input data to remove dependence between the class and protected attribute

according to a predefined fairness constraint. Other preprocessing methods (Calmon et al.,

2017; Zemel et al., 2013) cast the transformation as an optimization problem to find a randomized

mapping that limits the dependence of the transformed outcome on protected attribute while

remaining statistically close to the original dataset.

In contrast, post-processing methods adjust the class labels (or label distributions) provided

by black box classifiers to satisfy desired fairness criteria (Hardt et al., 2016; Pleiss et al.,

2017; Hacker and Wiedemann, 2017). Though guaranteeing equalized odds and calibration at
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the same time has been shown by (Kleinberg et al., 2016) and (Chouldechova, 2017b) to be

impossible in general, (Pleiss et al., 2017) proposes a calibrated post-processing method that

provides a relaxed notion of equalized odds.

In-processing approaches learn to minimize the prediction loss while incorporating the

fairness constraints into the training process (Donini et al., 2018; Zafar et al., 2017; Zafar

et al., 2017a; Zafar et al., 2017b; Cotter et al., 2018; Goel et al., 2018; Woodworth et al.,

2017; Kamishima et al., 2011; Bechavod and Ligett, 2017; Rezaei et al., 2020; Memarrast et

al., 2021), generative-adversarial training (Madras et al., 2018; Zhang et al., 2018; Celis and

Keswani, 2019; Xu et al., 2018; Adel et al., 2019), reduction-based methods (Agarwal et al.,

2018; Cotter et al., 2018), or meta-algorithms (Celis et al., 2019; Menon and Williamson, 2018).

2.3.2 Fair Ranking Methods

We can broadly group existing fair ranking approaches into various categories based on

their notions of fairness. Some previous work has focused on compositional-based fairness for

items maintaining statistical parity where the objects are positioned (Yang and Stoyanovich,

2017; Zehlike et al., 2017; Celis et al., 2018; Stoyanovich et al., 2018; Asudeh et al., 2019; Geyik et

al., 2019; Celis et al., 2020). Metric-based works base their fairness constraints on statistical parity

for pairwise ranking across item groups (Beutel et al., 2019; Kallus and Zhou, 2019; Narasimhan

et al., 2020; Lahoti et al., 2019). Several works argue that economic opportunities (e.g., exposure,

clickthroughs, etc.) should be allocated on the basis of merit, not a winner-take-all strategy

(Singh and Joachims, 2018; Biega et al., 2018; Diaz et al., 2020). While fair learning-to-rank

approach discussed in chapter 4 falls into this category, none of the existing techniques utilizes
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a distributionally robust approach to derive a fair LTR system like ours. As a result, their

performance degrades in the presence of training label noise (shown in chapter 4). In addition

to item-based approaches, two-sided fair ranking techniques satisfy fairness constraints for both

users and items (Do et al., 2021; Patro et al., 2020a; Basu et al., 2020; Patro et al., 2020b).

As opposed to group fairness in ranking, there have been some works focusing on individual

fair ranking. Group fair models can be inherently unfair to individuals. Among the models,

(Biega et al., 2018) and (Singh and Joachims, 2019) propose individually fair LTR methods

that measure the similarity of items through relevance. In a fundamentally different approach,

(Bower et al., 2020) builds upon the work of (Dwork et al., 2012) to employ a fair metric on

queries.

There have also been recent studies that focus on other aspects of fair ranking. Several

works have looked at fair ranking in the presence of noisy protected attributes (Mehrotra and

Celis, 2021; Mehrotra and Vishnoi, 2022). Another line of research aims to select individuals

distributed across different groups fairly when there is implicit group bias (Kleinberg and

Raghavan, 2018; Celis et al., 2020). Recent studies have also investigated how uncertainty about

protected attributes, labels, and other features of the machine learning model affect its fairness

properties (Ghosh et al., 2021; Prost et al., 2021). Contrary to this line of work, (Singh et

al., 2021) takes into account the presence of uncertainty when estimating merits and defining

a corresponding merit-based notion of fairness. In a different direction, (Oosterhuis, 2021)

proposes a computationally efficient method for fair LTR using Plackett-Luce models, ensuring

its viability in real-world scenarios.
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2.3.3 Trade-offs in Fair Methods

Following our discussion in 1.3.1 we look at some of the fair techniques that achieve a

performance-fairness trade-off. Numerous fair classification algorithms have been developed over

the past few years, with most targeting one or two fairness measures (Zafar et al., 2015; Hardt

et al., 2016; Goel et al., 2018; Aghaei et al., 2019). With some exceptions (Blum and Stangl,

2019), predictive performance and fairness are typically competing objectives in supervised

machine learning approaches (Menon and Williamson, 2018). Thus, though satisfying many

fairness properties simultaneously may be näıvely appealing, doing so often significantly degrades

predictive performance or even creates infeasibility (Kleinberg et al., 2016).

Given this, many approaches seek to choose parameters θ for (probabilistic) classifier Pθ

that balance the competing predictive performance and fairness objectives (Kamishima et al.,

2012; Hardt et al., 2016; Menon and Williamson, 2018; Celis et al., 2019; Martinez et al.,

2020; Rezaei et al., 2020). Recently, (Hsu et al., 2022) proposed a novel optimization framework

to satisfy three conflicting fairness measures (demographic parity, equalized odds, and predictive

rate parity) to the best extent possible:

min
θ

Eŷ∼Pθ

[
loss(ŷ,y) + αDPD.DP(ŷ,a) + αOddsD.EqOdds(ŷ,y,a) + αPRPD.PRP(ŷ,y,a)

]
. (2.7)



CHAPTER 3

Distributionally Robust Fair

Classification

(Parts of this chapter were previously published as “Fairness for Robust Log Loss Classification”

(Rezaei et al., 2020) in the AAAI Conference on Artificial Intelligence 34 (AAAI 2020) and

as “Robust Fairness under Covariate Shift” (Rezaei et al., 2021) in the AAAI Conference on

Artificial Intelligence 35 (AAAI 2021).)

3.1 Fairness for Robust Log Loss Classification

The adversarial robust formulation for logarithmic loss has been shown to reduces to

constrained entropy maximization (Topsøe, 1979). This, however, will no longer be true under

additional constraints on the predictor. We seek to leverage this formulation to re-derive a new

classifier from the first principles of distributional robustness that incorporates fairness criteria

24
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into a worst-case logarithmic loss minimization. We again consider a binary decision setting

with examples drawn from a population distribution: (X, A, Y ) ∼ P , with P̃ (x, a, y) denoting

this empirical sample distribution: {xi, ai, yi}i=1:n

3.1.1 Robust Log Loss Minimization

The logarithmic loss, −
∑

x,y P (x, y) logP(y|x), is an information-theoretic measure of the

expected amount of “surprise” (in bits for log2) that the predictor, P(y|x), experiences when

encountering labels y distributed according to P (x, y). Robust minimization of the logarithmic

loss serves a fundamental role in constructing exponential probability distributions (e.g., Gaussian,

Laplacian, Beta, Gamma, Bernoulli (Lisman and Zuylen, 1972)) and predictors (Manning and

Klein, 2003). For conditional probabilities, it is equivalent to maximizing the conditional entropy

(Jaynes, 1957):

min
P(ŷ|x)∈∆

max
Q(ŷ|x)∈∆∩Ξ

−
∑
x,ŷ

P̃ (x)Q(ŷ|x) logP(ŷ|x) (3.1)

= max
P(ŷ|x)∈Ξ

−
∑
x,ŷ

P̃ (x)P(ŷ|x) logP(ŷ|x) = max
P̂ (ŷ|x)∈Ξ

H(Ŷ |X),

after simplifications based on the fact that the saddle point solution is P = Q. When the loss

maximizer Q is constrained to match the statistics of training data (specified using vector-valued

feature function ϕ),

Ξ :
{
Q | EP̃ (x);Q(ŷ|x)[ϕ(X, Ŷ )] = EP̃ (x,y)

[
ϕ(X, Y )

] }
, (3.2)
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the robust log loss minimizer/maximum entropy predictor (Equation 3.1) is the logistic regression

model, P (y|x) ∝ eθTϕ(x,y), with θ estimated by maximizing data likelihood (Manning and Klein,

2003). While this distribution technically needs to only be defined at input values in which

training data exists (i.e., P̃ (x) > 0), we employ an inductive assumption that generalizes the

form of the distribution to other inputs.

3.1.2 Robust and Fair Log Loss Minimization

We recall the fairness definitions 2.2.1, 2.2.2 and 2.2.3. As mentioned in 2.2, The sets of

decision functions P satisfying these fairness constraints are convex and can be defined using

linear constraints (Agarwal et al., 2018). The general form for these constraints is:

Γ :
{
P | 1

pγ1
E P̃ (x,a,y)
P(ŷ|x,a,y)

[I(Ŷ =1 ∧ γ1(A, Y ))] = 1
pγ0

E P̃ (x,a,y)
P(ŷ|x,a,y)

[I(Ŷ =1 ∧ γ0(A, Y ))]
}
, (3.3)

where γ1 and γ0 denote some combination of group membership and ground-truth class for each

example, while pγ1 and pγ0 denote the empirical frequencies of γ1 and γ0: pγi = EP̃ (a,y)[γi(A, Y )].

We specify γ1 and γ0 in (Equation 3.3) for fairness constraints (Definitions 2.2.1, 2.2.2 and 2.2.3)

as:

Γdp ⇐⇒ γj(A, Y ) = I(A = j); (3.4)

Γe.opp ⇐⇒ γj(A, Y ) = I(A = j ∧ Y = 1); (3.5)

Γe.odd ⇐⇒ γj(A, Y ) =

 I(A = j ∧ Y = 1)

I(A = j ∧ Y = 0)

 . (3.6)
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Since the fairness constraints and statistic-matching constraints are often not fully compatible

(i.e., Γ ̸⊆ Ξ), the saddle point solution is no longer simple (i.e., P ̸= Q).

3.1.2.1 Formulation and Algorithms

Given fairness requirements for a predictor (Equation 3.3) and partial knowledge of the

population distribution provided by a training sample (Equation 3.2), how should a fair predictor

be constructed? Like all inductive reasoning approaches, good performance on a known training

sample does not ensure good performance on the unknown population distribution. We take

a robust estimation perspective by seeking the best solution for the worst-case population

distribution under these constraints.

3.1.2.2 Robust and fair log loss minimization

We formulate the robust fair predictor’s construction as a minimax game between the predictor

and a worst-case approximator of the population distribution. We assume the availability of a set

of training samples, {(xi, ai, yi)}i=1:n, which we equivalently denote by probability distribution

P̃ (x, a, y).

Definition 3.1.1. The Fair Robust Log-Loss Predictor, P, minimizes the worst-case

log loss—as chosen by approximator Q constrained to reflect training statistics (denoted by
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set Ξ of (Equation 3.2))—while providing empirical fairness guarantees1 (denoted by set Γ of

(Equation 3.3)):

min
P∈∆∩Γ

max
Q∈∆∩Ξ

E P̃ (x,a,y)
Q(ŷ|x,a,y)

[
− logP(Ŷ |X, A, Y )

]
. (3.7)

Though conditioning the decision variable Ŷ on the true label Y would appear to introduce

a trivial solution (Ŷ = Y ), instead, Y only influences Ŷ based on fairness properties due to the

robust predictor’s construction. Note that if the fairness constraints do not relate Y and Ŷ , the

resulting distribution is conditionally independent (i.e., P(Ŷ |X, A, Y = 0) = P(Ŷ |X, A, Y = 1)),

and when all fairness constraints are removed, this formulation reduces to the familiar logistic

regression model (Manning and Klein, 2003). Conveniently, this saddle point problem is

convex-concave in P and Q with additional convex constraints (Γ and Ξ) on each distribution.

3.1.2.3 Parametric Distribution Form

By leveraging strong minimax duality in the “log-loss game” (Topsøe, 1979; Grünwald and

Dawid, 2004) and strong Lagrangian duality (Boyd and Vandenberghe, 2004), we derive the

parametric form of our predictor.2

1∆ is the set of conditional probability simplexes (i.e., P(y|x, a) ≥ 0,
∑

y′ P(y′|x, a) = 1,∀x, y, a).

2The proofs of Theorem 3.1.2 and other theorems in the paper are available in the supplementary
material.
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Theorem 3.1.2. The Fair Robust Log-Loss Predictor (Definition 3.1.1) has equivalent

dual formulation:

min
θ

max
λ

1
n

∑
(x,a,y)∈D

{
EQθ,λ(ŷ|x,a,y)

[
− logPθ,λ(Ŷ |x, a, y)

]

+ θ⊤
(
EQθ,λ(ŷ|x,a,y)[ϕ(x, Ŷ )]− ϕ(x, y)

)
+ λ

(
1

pγ1
EPθ,λ(ŷ|x,a,y)[I(Ŷ =1 ∧ γ1(A, Y ))]

− 1
pγ0

EPθ,λ(ŷ|x,a,y)[I(Ŷ =1 ∧ γ0(A, Y ))]
)}
, (3.8)

with Lagrange multipliers θ and λ for moment matching and fairness constraints, respectively,

and n samples in the dataset. The parametric distribution of P is:

Pθ,λ(ŷ = 1|x, a, y) = (3.9)

min
{
eθ

⊤ϕ(x,1)/Zθ(x),
pγ1

λ

}
if γ1(a, y) ∧ λ > 0

max
{
eθ

⊤ϕ(x,1)/Zθ(x), 1−
pγ0

λ

}
if γ0(a, y) ∧ λ > 0

max
{
eθ

⊤ϕ(x,1)/Zθ(x), 1+
pγ1

λ

}
if γ1(a, y) ∧ λ < 0

min
{
eθ

⊤ϕ(x,1)/Zθ(x),−
pγ0

λ

}
if γ0(a, y) ∧ λ < 0

eθ
⊤ϕ(x,1)/Zθ(x) otherwise,
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where Zθ(x) = eθ
⊤ϕ(x,1) + eθ

⊤ϕ(x,0) is the normalization constant. The parametric distribution

of Q is defined using the following relationship with P:

Qθ,λ(ŷ = 1|x, a, y) = Pθ,λ(ŷ = 1|x, a, y)× (3.10)

(
1 + λ

pγ1
Pθ,λ(ŷ = 0|x, a, y)

)
if γ1(a, y)

(
1− λ

pγ0
Pθ,λ(ŷ = 0|x, a, y)

)
if γ0(a, y)

1 otherwise.

Note that the predictor’s distribution is a member of the exponential family that is similar

to standard binary logistic regression, but with the option to truncate the probability based

on the value of λ. The truncation of Pθ,λ(ŷ = 1|x, a, y) is from above when 0 < pγ1/λ < 1

and γ1(a, y) = 1, and from below when −1<pγ1/λ< 0 and γ1(a, y) = 1. The approximator’s

distribution is computed from the predictor’s distribution using the quadratic function in

(Equation 3.10), e.g., in the case where γ1(a, y)=1:

Qθ,λ(ŷ = 1|x, a, y) = ρ(1 + λ
pγ1

(1− ρ)) = (1 + λ
pγ1

)ρ− λ
pγ1

ρ2,

where ρ ≜ Pθ,λ(ŷ=1|x, a, y).

Figure 5 illustrates the relationship between Pθ,λ(ŷ = 1|x, a, y) and Qθ,λ(ŷ = 1|x, a, y) for

decisions influencing the fairness of group one (i.e., γ1(a, y) = 1). When λ/pγ1 = 0, the

approximator’s probability is equal to the predictor’s probability as shown in the plot as a

1https://github.com/gpleiss/equalized_odds_and_calibration

https://github.com/gpleiss/equalized_odds_and_calibration
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Figure 5: The relationship between predic-
tor and approximator’s distributions, P and
Q.
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Figure 6: Post-processing correction 1 of
logistic regression (Pleiss et al., 2017; Hardt
et al., 2016) on the COMPAS dataset.

straight line. Positive values of λ curve the function upward (e.g., λ/pγ1 =1) as shown in the

plot. For larger λ (e.g., λ/pγ1 =2), some of the valid predictor probabilities (0 < P < 1) map

to invalid approximator probabilities (i.e., Q ≥ 1) according to the quadratic function. In this

case (e.g., λ/pγ1 =2 and Pθ,λ(ŷ=1|x, a, y) > 0.5), the predictor’s probability is truncated to

pγ1/λ=0.5 according to (Equation 3.9). Similarly, for negative λ, the curve is shifted downward

and the predictor’s probability is truncated when the quadratic function mapping results in a

negative value of Q. When γ0(a, y) = 1, the reverse shifting is observed, i.e., shifting downward

when λ > 0 and shifting upward when λ < 0.

We contrast our reshaping function of the decision distribution (Figure 5) with the post-

processing method of (Hardt et al., 2016) shown in Figure 6. Here, we use Q(Ŷ = 1|x, a) to

represent the estimating distributions (the approximator’s distribution in our method, and
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the standard logistic regression in (Hardt et al., 2016)) and the post-processed predictions as

P(Ŷ = 1|x, a). Both shift the positive prediction rates of each group to provide fairness. However,

our approach provides a monotonic and parametric transformation, avoiding the criticisms that

(Hardt et al., 2016)’s modification (flipping some decisions) is partially random, creating an

unrestricted hypothesis class (Bechavod and Ligett, 2017). Additionally, since our parametric

reshaping function is learned within an in-processing method, it avoids the noted suboptimalities

that have been established for certain population distributions when employing post-processing

alone (Woodworth et al., 2017).

3.1.2.4 Enforcing fairness constraints

The inner maximization in (Equation 3.8) finds the optimal λ that enforces the fairness

constraint. From the perspective of the parametric distribution of P, this is equivalent to finding

threshold points (e.g., pγ1/λ and 1− pγ0/λ) in the min and max function of (Equation 3.9) such

that the expectation of the truncated exponential probabilities of P in group γ1 match the one

in group γ0. Given the value of θ, we find the optimum λ∗ directly by finding the threshold

points. We first compute the exponential probabilities Pe(ŷ = 1|x, a, y) = exp(θ⊤ϕ(x, 1))/Zθ(x)

for each examples in γ1 and γ0. Let E1 and E0 be the sets that contain Pe for group γ1 and γ0

respectively. Finding λ∗ given the sets E1 and E0 requires sorting the probabilities for each set,

and then iteratively finding the threshold points for both sets simultaneously. We refer to the

supplementary material for the detailed algorithm.
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3.1.2.5 Learning

Our learning process seeks parameters θ, λ for our distributions (Pθ,λ and Qθ,λ) that match

the statistics of the approximator’s distribution with training data (θ) and provide fairness (λ),

as illustrated in (Equation 3.8). Using our algorithm from the previous subsection to directly

compute the best λ given arbitrary values of θ, denoted λ∗θ, the optimization of (Equation 3.8)

reduces to a simpler optimization solely over θ, as described in Theorem 3.1.3.

Theorem 3.1.3. Given the optimum value of λ∗θ for θ, the dual formulation in (Equation 3.8)

reduces to:

min
θ

1
n

∑
(x,a,y)∈D ℓθ,λ∗

θ
(x, a, y), where: (3.11)

ℓθ,λ∗(x, a, y) = −θ⊤ϕ(x, y)+

− log(
pγ1

λ∗
θ
) + θ⊤(ϕ(x, 1)) if γ1(a, y) ∧ T (x, θ) ∧ λ∗θ > 0

− log(
pγ0

λ∗
θ
) + θ⊤(ϕ(x, 0)) if γ0(a, y) ∧ T (x, θ) ∧ λ∗θ > 0

− log(−pγ1

λ∗
θ
) + θ⊤(ϕ(x, 0)) if γ1(a, y) ∧ T (x, θ) ∧ λ∗θ < 0

− log(−pγ0

λ∗
θ
) + θ⊤(ϕ(x, 1)) if γ0(a, y) ∧ T (x, θ) ∧ λ∗θ < 0

logZθ(x) otherwise.

Here, T (x, θ) ≜ 1 if the exponential probability is truncated (for example when eθ
⊤ϕ(x,1)/Zθ(x) >

pγ1/λ
∗
θ, γ1(a, y) = 1, and λ∗θ > 0), and is 0 otherwise.

We present an important optimization property for our objective function in the following

theorem.
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Theorem 3.1.4. The objective function in Theorem 3.1.3 (Equation 3.11) is convex with respect

to θ.

To improve the generalizability of our parametric model, we employ a standard L2 regulariza-

tion technique that is common for logistic regression models: θ∗ = argminθ
∑

(x,a,y)∈D ℓθ,λ∗
θ
(x, a, y)+

C
2 ∥θ∥

2
2, where C is the regularization constant. We employ a standard batch gradient descent

optimization algorithm (e.g., L-BFGS) to obtain a solution for θ∗.1 We also compute the

corresponding solution for the inner optimization, λ∗θ∗ , and then construct the optimal predictor

and approximator’s parametric distributions based on the values of θ∗ and λ∗θ∗ .

3.1.2.6 Inference

In the inference step, we apply the optimal parametric predictor distribution Pθ∗,λ∗
θ∗

to

new example inputs (x, a) in the testing set. Given the value of θ∗ and λ∗θ∗ , we calculate the

predictor’s distribution for our new data point using (Equation 3.9). Note that the predictor’s

parametric distribution also depends on the group membership of the example. For fairness

constraints not based on the actual label Y , e.g., D.P., this parametric distribution can be

directly applied to make predictions. However, for fairness constraints that depend on the true

label, e.g., E.Opp. and E.Odd., we introduce a prediction procedure that estimates the true

label using the approximator’s parametric distribution.

For fairness constraints that depend on the true label, our algorithm outputs the predictor and

approximator’s parametric distributions conditioned on the value of true label, i.e., P(ŷ|x, a, y)

1We refer the reader to the supplementary material for details.
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and Q(ŷ|x, a, y). Our goal is to produce the conditional probability of ŷ that does not depend on

the true label, i.e., P(ŷ|x, a). We construct the following procedure to estimate this probability.

Based on the marginal probability rule, P(ŷ|x, a) can be expressed as:

P(ŷ|x, a) = P(ŷ|x, a, y = 1)P (y = 1|x, a) (3.12)

+ P(ŷ|x, a, y = 0)P (y = 0|x, a).

However, since we do not have access to P (y|x, a), we cannot directly apply this expression.

Instead, we approximate P (y|x, a) with the approximator’s distribution Q(ŷ|x, a). Using the

similar marginal probability rule, we express the estimate as:

Q(ŷ|x, a) ≈ Q(ŷ|x, a, y = 1)Q(ŷ = 1|x, a) (3.13)

+Q(ŷ|x, a, y = 0)Q(ŷ = 0|x, a).

By rearranging the terms above, we calculate the estimate as:

Q(ŷ=1|x, a)=Q(ŷ=1|x, a, y=0)/(Q(ŷ=0|x, a, y=1)

+Q(ŷ=1|x, a, y=0)), (3.14)

which is directly computed from the approximator’s parametric distribution produced by

our model using (Equation 3.10). Finally, to obtain the predictor’s conditional probability
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Figure 7: Experimental results on a synthetic dataset with: a heatmap indicating the predictive
probabilities of our approach, along with decision and threshold boundaries; and the unfair
logistic regression decision boundary.

estimate (P(ŷ|x, a)), we replace P (y|x, a) in (Equation 3.12) with Q(ŷ|x, a) calculated from

(Equation 3.14).

3.1.3 Experiments

3.1.3.1 Illustrative behavior on synthetic data

We illustrate the key differences between our model and logistic regression with demographic

parity requirements on 2D synthetic data in Figure 7. The predictive distribution includes

different truncated probabilities for each group: raising the minimum probability for group A = 1

and lowering the maximum probability for group A = 0. This permits a decision boundary

that differs significantly from the logistic regression decision boundary and better realizes the

desired fairness guarantees. In contrast, post-processing methods using logistic regression as the

base classifier (Hardt et al., 2016) are constrained to reshape the given unfair logistic regression
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predictions without shifting the decision boundary orientation, often leading to suboptimality

(Woodworth et al., 2017).

3.1.3.2 Datasets

We evaluate our proposed algorithm on three benchmark fairness datasets:

1. The UCI Adult (Dheeru and Karra Taniskidou, 2017) dataset includes 45,222 samples with

an income greater than $50k considered to be a favorable binary outcome. We choose gender

as the protected attribute, leaving 11 other features for each example.

2. The ProPublica’s COMPAS recidivism dataset (Larson et al., 2016) contains 6,167 samples,

and the task is to predict the recidivism of an individual based on criminal history, with the

binary protected attribute being race (white and non-white) and an additional nine features.

3. The dataset from the Law School Admissions Council’s National Longitudinal Bar Passage

Study (Wightman, 1998) has 20,649 examples. Here, the favorable outcome for the individual

is passing the bar exam, with race (restricted to white and black only) as the protected

attribute, and 13 other features.

3.1.3.3 Comparison methods

We compare our method (Fair Log-loss) against various baseline/fair learning algorithms

that are primarily based on logistic regression as the base classifier:

1. Unconstrained logistic regression is a standard logistic regression model that ignores all

fairness requirements.

2. The cost sensitive reduction approach by (Agarwal et al., 2018) reduces fair classification

to learning a randomized hypothesis over a sequence of cost-sensitive classifiers. We use the



38

sample-weighted implementation of Logistic Regression in scikit-learn as the base classifier,

to compare the effect of the reduction approach. We evaluate the performance of the model

by varying the constraint bounds across the set ϵ ∈ {.001, .01, .1}.

3. The constraint-based learning method1 of (Zafar et al., 2017; Zafar et al., 2017a) uses a

covariance proxy measure to achieve equalized odds (under the name disparate mistreatment)

(Zafar et al., 2017a), and improve the disparate impact ratio (Zafar et al., 2017), which we

use as a baseline method to evaluate demographic parity violation. They cast the resulting

non-convex optimization as a disciplined convex-concave program in training time. We use

the logistic regression as the base classifier.

4. For demographic parity, we compare with the reweighting method (reweighting) of (Kami-

ran and Calders, 2012), which learns weights for each combination of class label and protected

attribute and then uses these weights to resample from the original training data which yields

a new dataset with no statistical dependence between class label and protected attribute.

The new balanced dataset is then used for training a classifier. We use IBM AIF360 toolkit

to run this method.

5. For equalized odds, we also compare with the post-processing method of (Hardt et

al., 2016) which transforms the classifier’s output by solving a linear program that finds a

prediction minimizing misclassification errors and satisfying the equalized odds constraint

1https://github.com/mbilalzafar/fair-classification

https://github.com/mbilalzafar/fair-classification
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Figure 8: Test classification error versus Demographic Parity (top row) and Equalized Odds
(bottom row) constraint violations. The bars indicate standard deviation on 20 random splits of
data.

from the set of probability formed by the convex hull of the original classifier’s probabilities

and the extreme point of probability values (i.e., zero and one).

3.1.3.4 Evaluation measures and setup

Data-driven fair decision methods seek to minimize both prediction error rates and measures

of unfairness. We consider the misclassification rate (i.e., the 0-1 loss, E[Ŷ ̸= Y ]) on a withheld

test sample to measure prediction error. To quantify the unfairness of each method, we measure

the degree of fairness violation for demographic parity (D.P.) as:
∣∣E[I(Ŷ = 1)|A = 1]−E[I(Ŷ =

1)|A = 0]
∣∣, and the sum of fairness violations for each class to measure the total violation for

equalized odds (E.Odd.) as:
∑

y∈{0,1}
(∣∣E[I(Ŷ = 1)|A = 1, Y = y]−E[I(Ŷ = 1)|A = 0, Y = y]

∣∣),
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to obtain a level comparison across different methods. We follow the methodology of (Agarwal et

al., 2018) to give all methods access to the protected attribute both at training and testing time

by including the protected attribute in the feature vector. We perform all of our experiments

using 20 random splits of each dataset into a training set (70% of examples) and a testing set

(30%). We record the averages over these twenty random splits and the standard deviation.

We cross validate our model on a separate validation set using the best logloss to select an L2

penalty from ({.001, .005, .01, .05, .1, .2, .3, .4, .5}).

3.1.3.5 Experimental Results

Figure 8 provides the evaluation results (test error and fairness violation) of each method

for demographic parity and equalized odds on test data from each of the three datasets Fairness

can be vacuously achieved by an agnostic predictor that always outputs labels according to

independent (biased) coin flips. Thus, the appropriate question to ask when considering these

results is: “how much additional test error is incurred compared to the baseline of the unfair

logistic regression model for how much of an increase in fairness?”

For demographic parity on the Adult dataset, our Fair Log-loss approach outperforms all

baseline methods on average for both test error rate and for fairness violation, and on COMPAS

dataset it achieves the lowest ratio of increased fairness over increased error. Additionally,

the increase in test error over the unfair unconstrained logistic regression model is small. For

demographic parity on the Law dataset, the relationship between methods is not as clear, but

our Fair Log-loss approach still resides in the Pareto optimal set, i.e., there are no other methods

that are significantly better than our result on both criteria. For equalized odds, Fair Log-loss
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provides the lowest ratios of increased fairness over increased error rate for the Adult and

COMPAS datasets, and competitive performance on the Law dataset. The post-processing

method provides comparable or better fairness at the cost of significantly higher error rates.

This shows that the approximation in our prediction procedure does not significantly impact

the performance of our method. In terms of the running time, our method is an order of

magnitude faster than comparable methods (e.g., the train and test running time on one random

split of the Adult dataset takes approximately 5 seconds by our algorithm, 80 seconds for the

constraint-based method (Zafar et al., 2017), and 100 seconds for the reduction-based method

(Agarwal et al., 2018)).
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3.2 Robust Fairness under Covariate Shift

Though many definitions and measures of (un)fairness have been proposed (See (Verma and

Rubin, 2018; Mehrabi et al., 2019)), the most widely adopted are group fairness measures of

demographic parity (Calders et al., 2009), equalized opportunity, and equalized odds (Hardt et

al., 2016). Techniques have been developed as either post-processing steps (Hardt et al., 2016)

or in-processing learning methods (Agarwal et al., 2018; Zafar et al., 2017a; Rezaei et al., 2020)

seeking to achieve fairness according to these group fairness definitions. These methods attempt

to make fair predictions at testing time by strongly assuming that training and testing data are

independently and identically drawn (iid) from the same distribution, so that providing fairness

on the training dataset provides approximate fairness on the testing dataset.

In practice, it is common for data distributions to shift between the training data set (source

distribution) and the testing data set (target distribution). For example, the characteristics of

loan applicants may differ significantly over time due to macroeconomic trends or changes in

the self-selection criteria that potential applicants employ.

Figure 9 illustrates the declining performance of a post-processing method (Hardt et al., 2016)

and an in-processing method (Rezaei et al., 2020) that do not consider distribution shift and

instead only depend on source fairness measurements. Therefore, relying on the iid assumption,

which is often violated in practice, introduces significant limitations for realizing desired fairness

in critical applications.
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Figure 9: The difference of equalized opportunity between two genders in German UCI dataset evaluated
on the target distribution for (a) the post-processing method of (Hardt et al., 2016) and (b) an in-
processing fairLR method (Rezaei et al., 2020), that both do not account for distribution shift, and
correct true positive rate parity on source data. The histograms on the left show the corresponding
distribution shift on first principal component of the covariates between source and target data. The
shift intensity has an overall increasing effect on DEO violation of both methods.

We seek to address the task of providing fairness guarantees under the non-iid assumption

of covariate shift. Covariate shift is a special case of data distribution shift. It assumes that the

relationship between labels and covariates (inputs) is the same for both distributions, while only

the source and target covariate distributions differ.

In this work, we propose a robust estimation approach for constructing a fair predictor under

covariate shift.
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Our model builds on robust classification method of (Liu and Ziebart, 2014) under covariate

shift, where the target distribution is estimated by a worst-case adversary that maximizes the

log-loss while matching the feature statistics under source distribution. Therefore, if we know

the separating set of features, we can incorporate them as constraints for the adversary. However,

it is usually difficult to know the exact causal model of the data generating process in practice.

3.2.1 Approach

3.2.1.1 Preliminaries & Notation

We assume a binary classification task Y, Ŷ ∈ {0, 1}, where Y denotes the true label, and Ŷ

denotes the prediction for a given instance with features X ∈ X and group attribute A ∈ {0, 1}.

We consider y = 1 as the privileged class (e.g., an applicant who would repay a loan). Further,

we assume a given source distribution (X, A, Y ) ∼ Psrc over features, attribute, and label, and a

target distribution (X, A) ∼ Ptrg over features and attribute only, throughout our paper.

3.2.1.2 Covariate Shift

In the context of fair prediction, the covariate shift assumption is that the distribution of

covariates and group membership can shift between source and target distributions:

Psrc(x, a, y) = Psrc(x, a)P (y|x, a) (3.15)

Ptrg(x, a, y) = Ptrg(x, a)P (y|x, a). (3.16)

Note that we do not assume how the sensitive group membership a is correlated with other

features x.
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3.2.1.3 Importance Weighting

A standard approach for addressing covariate shift is to reweight the source data to represent

the target distribution (Sugiyama et al., 2007). A desired statistic f(x, a, y) of the target

distribution can be obtained using samples from the source distribution (xi, ai, yi)i=1:n:

EPtrg(x,a)
P (y|x,a)

[
f(X, A, Y )

]
≈

n∑
i=1

Ptrg(xi, ai)

Psrc(xi, ai)
f(xi, ai, yi). (3.17)

As long as the source distribution has support for the entire target distribution (i.e., Ptrg(x, a) >

0 =⇒ Psrc(x, a) > 0), this approximation is exact asymptotically as n → ∞. However,

the approximation is only guaranteed to have bounded error for finite n if the source dis-

tribution’s support for target distribution samples is lower bounded (Cortes et al., 2010):

EPtrg(x,a)

[
Ptrg(X, A)/Psrc(X, A)

]
<∞. Unfortunately, this requirement is fairly strict and will

not be satisfied even under common and seemingly benign amounts of shift. For example, if

source and target samples are drawn from Gaussian distributions with equal (co-)variance, but

slightly different means, it is not satisfied.

3.2.1.4 Robust Log Loss Classification under Covaraite Shift

We base our method on the robust approach of (Liu and Ziebart, 2014) for covariate shift,

which addresses this fragility of reweighting methods. In this formulation, the probabilistic

predictor P minimizes the log loss on a worst-case approximation of the target distribution
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provided by an adversary Q that maximizes the log loss while matching the feature statistics of

the source distribution:

min
P(y|x)∈∆

max
Q(y|x)∈∆∩Ξ

EPtrg(x)Q(y|x)[− logP(Y |X)]

= max
P(y|x)∈∆∩Ξ

HPtrg(x)P(y|x)(Y |X), (3.18)

where a moment-matching constraint set Ξ = {Q |EPsrc(x)Q(y|x)[ϕ(X, Y )] = EPsrc(x,y)[ϕ(X, Y )]}

on source data is enforced with ϕ(x, y) denoting the feature function, and ∆ denoting the condi-

tional probability simplex. A first-order moments feature function, ϕ(x, y) = [x1y, x2y, . . . xmy]
⊤,

is typical but higher-order moments, e.g., yx1, yx
2
2, yx

n
3 , . . . or mixed moments, e.g., yx1, yx1x2, yx

2
1x2x3, . . . ,

can be included. The saddle point solution under these assumptions is P = Q which reduces

the formulation to maximizing the target distribution conditional entropy (H) while matching

feature statistics of the source distribution. The probabilistic predictor of (Liu and Ziebart,

2014) reduces to the following parametric form:

Pθ(y|x) = e
Psrc(x)
Ptrg(x)

θ⊤ϕ(x,y)
/∑

y′∈Y
e

Psrc(x)
Ptrg(x)

θ⊤ϕ(x,y′)
, (3.19)

where the Lagrange multipliers θ maximize the target distribution log likelihood in the dual

optimization problem.

3.2.2 Formulation

Our formulation seeks a robust and fair predictor under the covariate shift assumption by

playing a minimax game between a minimizing predictor and a worst-case approximator of
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the target distribution that matches the feature statistics from the source and marginals of

the groups from target. We assume the availability of a set of labeled examples {xi, ai, yi}ni=1

sampled from the source Psrc(x, a, y) and unlabeled examples {xi, ai}mi=1 sampled from target

distribution Ptrg(x, a) during training.

Definition 2. The Fair Robust Log-Loss Predictor under Covariate Shift, P minimizes

the worst-case expected log loss with an µ-weighted expected fairness penalty on target, approxi-

mated by adversary Q constrained to match source distribution statistics (denoted by set Ξ) and

group marginals on target (Γ):

min
P∈∆

max
Q∈∆∩Ξ∩Γ

EPtrg(x,a)Q(y|x,a)[− logP(Y |X, A)] (3.20)

+µEPtrg(x,a)Q(y′|x,a)P(y|x,a)[f(A, Y
′, Y )]

such that:

Ξ(Q) : EPsrc(x,a)
Q(y|x,a)

[ϕ(X, Y )] = EPsrc(x,a,y)[ϕ(X, Y )] and

Γ(Q) : EPtrg(x,a)
Q(y|x,a)

[gk(A, Y )] = E Ptrg(x,a)

P̃trg(y|x,a)
[gk(A, Y )]︸ ︷︷ ︸

g̃k

,

∀k ∈ {0, 1}, where ϕ is the feature function, µ is the fairness penalty weight, gk(., .) is a

selector function for group k according to the fairness definition, i.e., for equalized opportunity:
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gk(A, Y ) = I(A=k∧Y =1) , g̃k the estimated group density on target, and f(., ., .) is a weighting

function of the mean score difference between the two groups:

f(A, Y, Ŷ ) =



1
g̃1

if g1(A, Y ) ∧ I(Ŷ =1)

− 1
g̃0

if g0(A, Y ) ∧ I(Ŷ =1)

0 otherwise.

(3.21)

The Γ constraint enforces Q to be consistent with the marginal probability of the groups

on target (g̃k) for equalized opportunity. This marginal probability is unknown, since the true

label Y on target is unavailable. Thus, we estimate these marginal probabilities by employing

the robust model (Equation 3.19) as P̃trg(y|x, a) in Γ in (Equation 3.20) to first guess the labels

under covariate shift ignoring fairness (µ = 0). We penalize the expected difference in true

positive rate of groups in target according to our worst-case approximation of each example

being positively labeled. This needs to be measured on the entire target example set and requires

batch gradient updates to enforce.
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Theorem 3.2.1. Given binary class labels and protected attributes y, a ∈ {0, 1}, the fair

probabilistic classifier for equalized opportunity robust under covariate shift as defined in

(Equation 3.20) can be obtained by solving:

log
1− P(y = 1|x, a)
P(y = 1|x, a)

+ µEP(y′|x,a)
[
f(a, y = 1, Y ′)

]
+
Psrc(x, a)

Ptrg(x, a)
θT
(
ϕ(x, y = 1)− ϕ(x, y = 0)

)
(3.22)

+
∑

k∈{0,1}

λkgk(a, y = 1) = 0,

where θ and λ are the dual Lagrange multipliers for source feature matching constraints (Ξ) and

target group marginal matching (Γ) respectively, and µ is the penalty weight chosen to minimize

the expected fairness violation on target.

Given the solution P∗ obtained above, for Q to be in equilibrium (given θ and λ) it suffices

to choose Q for y = 1 such that: Q(y|x, a) =

P∗(y|x, a)
1− µf(a, y, y)P∗(y|x, a) + µf(a, y, y)P∗2(y|x, a)

, (3.23)

where additionally it must hold that 0 ≤ Q(y|x, a) ≤ 1 :

=⇒


0 ≤ P(y = 1|x, a) ≤ 1

µf(a,1,1) if µf(a, 1, 1) > 1

0 ≤ P(y = 1|x, a) ≤ 1 otherwise.
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Due to monotonicity, P in (Equation 3.22) is efficiently found using a binary-search in the

simplex.

3.2.3 Experiments

We demonstrate the effectiveness of our method on biased samplings from four benchmark

datasets:

• The COMPAS criminal recidivism risk assessment dataset (Larson et al., 2016).

• UCI German dataset (Dheeru and Karra Taniskidou, 2017).

• UCI Drug dataset (Fehrman et al., 2017).

• UCI Arrhythmia dataset (Dheeru and Karra Taniskidou, 2017).

3.2.3.1 Biased Sampling:

We model a general shift in the distribution of covariates between source and target, i.e.,

Psrc(x, a) ̸= Ptrg(x, a), by creating biased sampling based on the principal components of the

covariates. We follow the previous literature on covariate shift (Gretton et al., 2009) and take the

following steps to create the covariate shift on each dataset: We normalized all non-categorical

features by z-score. We retrieve the first principal component C of covariates (x, a) by applying

principal component analysis (PCA). We then estimate the mean µ(C) and standard deviation

σ(C), and set a Gaussian distribution Dt(µ(C), σ(C)) for random sampling of target. We choose

parameters α, β and set another Gaussian distribution Ds(µ(C) + α, σ(C)β ) for random sampling

of source data. We fix the sample size for both source and target to 40% of the original dataset;

and construct the source data by sampling without replacement in proportion to Ds, and the

target data by sampling without replacement from the remaining data in proportion to Dt.
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Figure 10: Average prediction error versus average difference of equalized opportunity (DEO)
on target samples. The bar is the 95% confidence interval on ten random biased samplings on
the first principal component of the covariates (Psrc(x, a) ̸= Ptrg(x, a)).
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3.2.3.2 Baseline methods

We evaluate the performance of our model in terms of the trade-off between prediction

error and fairness violation on target under various intensities of covariate shift. We focus on

equalized opportunity as our fairness definition. We compare against the following baselines:

• Logistic Regression (LR) is the standard logistic regression predictor trained on source

data, ignoring both covariate shift and desired fairness properties.

• Robust Bias-Aware Log Loss Classifier (RBA) (Liu and Ziebart, 2014) in (Equation 3.18)

which accounts for the covariate shift but ignores fairness.

• Sample Re-weighted Logistic Regression (LR IW) (Shimodaira, 2000) minimizes the

re-weighted log loss on the source data, according to the importance weighting scheme

(Equation 3.17): it only accounts for the covariate shift.

• Post Processing1 (Hardt) transforms the logistic regression target output to adjust for

true positive rate parity (Hardt et al., 2016); ignores covariate shift.

• Fair Logistic Regression (fairLR) also optimizes worst-case log loss subject to fairness as

linear constraints with observed labels on source data (Rezaei et al., 2020). It accounts for

fairness, but ignores the covariate shift.

1We use the implementation from https://fairlearn.github.io.

https://fairlearn.github.io
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• Sample Re-weighted Fair Logistic Regression (fairLR IW) the fairLR method aug-

mented with importance weighting scheme (Equation 3.17) in training. This baseline account

for both fairness and covariate shift.

3.2.3.3 Results

Figure 10 shows our experimental results on three samplings from close to IID (left) to mild

(middle) and strong covariate shift (right). Figure 9 provides an example of these samplings on

German. On the COMPAS dataset, our method consistently achieves the lowest DEO while incurring

higher loss compared to RBA and FairLR. In contrast, the Hardt method’s difference of

equalized opportunity (DEO) increases with the increasing shift. The optimal µ lies consistently

close to zero on larger shifts on this dataset, which explains why RBA and FairLR are also

very close to our method, indicating that the created shift was positively correlated to fairness.

On the German dataset, our method provides the lowest and closest to zero average DEO on

all shifted samplings, with competitive prediction error compared to other baselines. As the

shift intensifies, DEO violation increases for other baselines (except RBA), which shows the

negative effect of covariate shift on fairness for this dataset. On the Drug dataset, our method

incurs higher DEO compared to Hardt’s for the IID setting. However, as the shift intensifies,

our method achieves the lowest DEO and lowest prediction error. The samples on Arrhythmia

are much smaller and have relative larger standard deviation of covariates. On this dataset,

our method achieves the lowest fairness violation at the cost of incurring slightly higher error

compared to RBA and other baselines.
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In summary, our method achieves the lowest DEO on 11 out of 12 samplings in our

experiments. The prediction error of our method on Drug also remains the lowest, while

remaining competitive on rest of the datasets.

3.2.4 Conclusions

In this work, we developed a novel adversarial approach for seeking fair decision making

under covariate shift. In contrast with importance weighting methods, our approach is designed

to operate appropriately even when portions of the shift between source and target distributions

are extreme. The key technical challenge we address is the lack of labeled target data points,

making target fairness assessment challenging. We instead propose to measure approximated

fairness against an worst-case adversary that is constrained by source data properties and group

marginals from target. We incorporate fairness as a weighted penalty and tune the weighted

penalty to provide fairness against the adversary. More extensive evaluation on naturally-biased

datasets and generalization of this approach to decision problems beyond binary classification

are both important future directions.



CHAPTER 4

Fairness for Robust Learning To

Rank

(This chapter is based on a paper published as “Fairness for Robust Learning To Rank” (Memar-

rast et al., 2023a) in The Pacific-Asia Conference on Knowledge Discovery and Data Mining 27

(PAKDD 2023).)

4.1 Introduction

Searching for relevant information through large amounts of data is a ubiquitous computing

task. Applications include ordering search results (e.g., Google, Bing, or Baidu), personalizing

social networks (e.g., Facebook, Instagram or Twitter), product recommendations for e-commerce

sites (e.g., Amazon or eBay), and content recommendation for news/media sites (e.g., YouTube

55
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or Netflix). Ranking a subset of items is a crucial component in these applications to help users

find relevant information quickly amongst vast amounts of data.

Rankings often have social implications beyond the immediate utility they provide, since

higher rankings provide opportunities for individuals and groups associated with the ranked

items. As a consequence, biases in ranking systems—whether intentional or not—raise ethical

concerns about their long-term economic and societal harming effect (Noble, 2018). Rankings

that solely maximize utility or relevance can perpetuate existing societal biases that exist in

training data whilst remaining oblivious to the societal detriment they cause by amplifying such

biases (O’Neil, 2016).

Conventional ranking algorithms typically produce rankings to best serve the interests of

those conducting searches by ordering the items by the probability of relevance so that utility

to the users will be maximized (Robertson, 1977). Users are fulfilled, yet being oblivious to

certain attributes of items to be ranked can have a harmful effect on minority groups in the

items. Consequently, this could lead to further disparities, particularly for socially salient

sub-populations, due to historic and current discriminatory practices which have introduced

biases into data-driven models (Friedman and Nissenbaum, 1996). Biased outcomes drawn

by these models negatively impact items in marginalized protected groups in critical decision

making systems such as hiring or housing where items compete for exposure. Being unfair

towards one group can lead to winner-takes-all dynamics that reinforce existing disparities (Singh

and Joachims, 2018). Protected group definitions vary between different applications, and can

include characteristics such as race, gender, religion, etc. In group fairness, algorithms divide
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Figure 11: Ranking 1 ignores fairness whereas Ranking 2 satisfies the demographic parity fairness
constraint while only slightly decreasing the utility.

the population into groups based on the protected attribute and guarantee the same treatment

for members across groups. In ranking, this treatment can be evaluated using statistical metrics

defined for measuring fairness. In this paper, we focus primarily on exposure-based group

fairness measures. As a notable example, demographic parity (DP) in ranking is satisfied if the

average exposure for both groups is equal in the top k ranks.

As a motivating example, in Figure 11 we consider two rankings based on items’ true

relevance and group membership. As a result of ranking 1, the highest utility is achieved, and

fairness is ignored. In contrast, ranking 2 satisfies the demographic parity fairness constraint

while still preserving high utility.

Fair ranking approaches seeking to provide group fairness properties can be categorized into

post-processing and in-processing methods. Post-processing techniques are used to re-rank a

given high utility ranking to incorporate fairness constraints while seeking to retain high utility
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(Singh and Joachims, 2018; Biega et al., 2018). These methods assume that true relevance labels

are available and require other fairness-unaware learning methods (e.g., regression) to predict

the true labels as a pre-processing step. Recovering from unfair regression based rankings in the

re-ranking step may not be feasible in some circumstances (Yadav et al., 2021).

The fair ranking problem can also be addressed as an in-processing, learning-to-rank (LTR)

task where the algorithm learns to maximize utility subject to fairness constraints from training

data. Our algorithm falls into this category. As a notable fair LTR techinque, DELTR (Zehlike

and Castillo, 2020) optimizes a weighted summation of a loss function and a fairness criterion.

This algorithm is constrained in how it measures fairness: it only considers the top-1 place in

each ranking but not how additional items are ranked. Fair-PG-LTR (Singh and Joachims, 2019),

another fair LTR method, prioritizes utility and fairness simultaneously for the full ranking

by making use of a policy gradient optimization algorithm. While providing a fairness-utility

trade-off, fair LTR approaches need to be robust to outliers and noisy data. For example, the

label of recidivism in the COMPAS dataset is regarded to be noisy (Eckhouse, 2017). This makes

prediction while incorporating fairness constraints more difficult. With improved robustness

properties, a fair LTR can achieve better utility for highly fair rankings, which results in a

preferable utility-fairness trade-off.

In this work, we derive a new LTR system based on the first principles of distributional

robustness to provide both fairness and robustness to label noise. We formulate a minimax

game with the ranker player choosing a distribution over rankings constrained to satisfy fairness

requirements on the training samples while maximizing utility, and an adversary player choosing
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a distribution of item relevancies that minimizes utility while being similar to training data

properties. Rather than narrowly optimizing the rankings for the specific training data, this

approach produces rankings that provide utility and fairness robustly for a family of distributions

that includes the training data. We show that this approach is flexible enough to implement a

wide range of fairness constraints and that it can be extended to accept generic utility values.

To compare our proposed framework to existing fair LTR solutions, we perform empirical

evaluations on simulated and real-world datasets that demonstrate the effectiveness and validity

of the resulting algorithm. We show that our approach is able to trade-off between utility and

fairness much better at high levels of fairness than existing baseline methods. Furthermore, the

robustness properties of our approach enable it to outperform existing baselines in the presence

of varying degrees of label noise in the training data. To the best of our knowledge, this is the

first distributionally robust fair LTR method.

4.2 Learning Fair Robust Ranking

4.2.1 Probabilistic Ranking

To formulate the ranking task, we consider a dataset of ranking problems D = {Ri}Ni=1

for N different queries, where each Ri = {dj}Mj=1 is a candidate item set of size M for a

single query. For every item dj in this set, we denote rel(dj) as its corresponding relevance

judgment. We denote the utility of a ranking (permutation) π for a single query as Util(π).

The optimization problem can be written as: π∗ = argmaxπ∈Πfair
Util(π). Utility measures used

for rankings are based on the relevance of the individual items being ranked for a particular
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ranking problem, R|query = {dj}Mj=1. For example, the Discounted Cumulative Gain (DCG)

(Järvelin and Kekäläinen, 2002), which is a common evaluation measure for ranking systems

that discounts the utility for lower-ranked items,

DCG(π) =
∑
dj∈R

2rel(dj) − 1

log(1 + πj)
⇒ Util(π) =

M∑
j=1

ujvπj , (4.1)

is a member of the more general family of linear utility functions where uj = 2rel(dj) − 1

representing the utility of a single item dj based on its relevance rel(.) and vk = 1
log(1+k)

providing the degree of attention that item dj receives by being placed at rank k by permutation

π, i.e., πdj = k.

The space of all permutations of items is exponential in the number of items, making näıve

methods that find a utility-maximizing ranking subject to fairness constraints intractable. To

overcome this problem, we consider a probabilistic ranking in which instead of a single ranking,

a distribution over rankings is used. We define the probability of positioning item dj at rank k

as Pj,k. Then P constructs a doubly stochastic matrix of size M ×M where entries in each row

and each column must sum up to 1. By employing the idea of probabilistic ranking, we express

the ranking utility in (Equation 4.1) as an expected utility of a probabilistic ranking:

U(P) =

M∑
j=1

M∑
k=1

Pj,k uj vk = uTPv, (4.2)
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which we equivalently express in a vectorized format where u and v are both column vectors of

size M . Following (Singh and Joachims, 2018), the fair ranking optimization can be expressed

as a linear programming problem:

max
P∈∆∩Γfair

uTPv (4.3)

where: ∆ : P1 = P⊤1 = 1, Pj,k ≥ 0, ∀1≤j,k≤M

and Γfair denotes any linear constraint set of the form f⊤Pg = h. Choosing f as the utility

of items according to groups and g as the exposure of ranking position enforces equality of

exposure across protected groups. In contrast to (Singh and Joachims, 2018), which uses this

framework to re-rank the items to satisfy fairness constraints (i.e., a post-processing method),

we extend this linear perspective to derive a learning-to-rank approach that learns to optimize

utility and fairness simultaneously during training (i.e., an in-processing method).

4.2.2 Learning to Rank using an Adversarial Approach

We adopt a distributionally robust approach to the LTR problem by constructing a worst-case

adversarial distribution on item utilities. We formulate the robust fair ranking construction as a

minimax game between two players: a fair predictor P that makes a probabilistic prediction

over the set of all possible rankings to maximize expected ranking utility; and an adversary

Q : Qj,k′ ≜ P (uj = 1,
∑

di∈Gdj
ui = k′) that approximates a probability distribution for the

utility of items which minimizes the expected ranking utility. The adversary is additionally

constrained to match the feature moments of the empirical training distribution. Since we solve
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the problem for a given query, the query-dependent terms are omitted from the formulation for

simplicity.

In our notation, we represent ranking items d by their feature representation X ∈ RM×L as

a matrix of M items with L features. For a given item set X, the expected ranking utility of a

probabilistic ranking P against a utility distribution Q can be expressed as:

U(X,P,Q) =
M∑
j=1

Euj |X∼Q

[
ujEπj |X∼P

[
vπj

] ]
. (4.4)

Then, the utility-maximizing optimization problem under fairness constraints can be formulated

as:

Definition 4.2.1. Given a training dataset of N ranking problems D = {(Xi,ui)}Ni=1, with

u ∈ RM being the true relevance and X ∈ RM×L the feature representation of ranking problem

of size M . The fair probabilistic ranking P(π) ∈ RM×M in adversarial learning-to-rank learns a

fair ranking that maximizes the worst-case ranking utility approximated by an adversary Q(ǔ),

constrained to match the feature statistics of the training data.

max
P(π|X)∈∆

min
Q(ǔ|X)

E
X∼P̃

[
U(X,P,Q)

]
+ λunfair(P,Q) (4.5)

s.t. EX∼P̃

 M∑
j=1

Eǔj |X∼Q

[
ǔjXj,:

] = E
X,u∼P̃

 M∑
j=1

ujXj,:



where P̃ denotes the empirical distribution over ranking dataset D = {(Xi,ui)}Ni=1, ǔ denotes

the random variable for adversary relevance, and ∆ denotes the set of doubly stochastic matrices.
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This general adversarial formulation plays a foundational role in constructing probability

models and prediction techniques (Grünwald and Dawid, 2004; Farnia and Tse, 2016; Fathony

et al., 2016; Fathony et al., 2017). Specifically, when the game is played using the logarithmic

loss, distributions from the exponential family and logistic regression are produced (Topsøe,

1979). Extensions to structured prediction, including learning permutations/matchings/rankings

provide computational efficiency and Bayes optimal consistency (Fathony et al., 2018). This

approach has been utilized to provide fair and robust predictions under covariate shift (Rezaei

et al., 2021) as well as for constructing reliable predictors for fair log loss classification (Rezaei

et al., 2020). Similar to this line of work, our proposed approach imposes fairness constraints

on predictor P. However, we avoid exponential distributions for rankings because exactly

normalizing the distribution over M ! rankings require a #P-hard matrix permanent calculation

(Petterson et al., 2009b).

Our formulation in Definition 4.2.1 accepts generic utility values. In our work, we focus on

binary utility, which is one of the common applications of the ranking problem, where the utility

label indicates if a particular item is relevant or not. However, as described in the appendix, the

extension of the method to other settings is easy.
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For the binary utility problem, the expected utility can be further simplified as:

U(X,P,Q) =
M∑
j=1

Euj |X∼Q

[
ujEπj |X∼P

[
vπj

] ]

=

M∑
j=1

M∑
k=1

 M∑
k′=1

Q(uj = 1,
∑

di∈Gdj

ui = k′|X)

P(πj = k|X)vk

= (Q1)⊤Pv = q⊤Pv, (4.6)

where the entries in the vector q contains the relevance probability of item dj . In the

following sections, we use this vector notation to simplify the optimization formulation.

4.2.3 Fairness of Exposure in Ranking

Our approach is flexible enough to implement a wide range of fairness constraints. In general,

fairness criteria defined bilinearly in P and Q can be applied (separately) to the optimization

framework. In this work, we focus on exposure-based fairness constraints such as demographic

parity, disparate treatment and disparate impact (Singh and Joachims, 2018).

Demographic parity only need to be expressed linearly in P. For a set of disjoint group mem-

bersG1, . . . , G|S|, the constraint requires
1

|Gs|
∑

dj∈Gs

∑M
k=1Pj,kvk = 1

|Gs′ |
∑

dj∈Gs′

∑M
k=1Pj,kvk =

τ, ∀s, s′ ∈ S. This can be compactly written in the vector form as f⊤s Pv=τ, s ∈ S.

For disparate treatment and disparate impact fairness constraints, the sufficient statistics

depend on the number of relevant items within each group. As shown in the appendix, these

fairness constraints can be expressed bilinearly in P and Q variables, so they can be incorporated



65

in the optimization framework. For the rest of the chapter, we focus on demographic parity in

our exposition and experiments.

4.3 Augmented marginal approach to fairness optimization

For some fairness definitions, the sufficient statistics depend on the number of relevant items

within each group. We let qk(x) denote the marginal probability of relevance level x for each

item when the group to which that item belongs has k total relevant items:

qk(x) ≜



P (u1 = x,
∑

dj∈G(d1)
uj = k)

P (u2 = x,
∑

dj∈G(d2)
uj = k)

...

P (un = x,
∑

dj∈G(dn)
uj = k).


(4.7)

For these sets of marginals to be valid, they must satisfy:

Γ ≜ ∀ groups s, sizes k,
∑

di∈Gs

P

ui = 1

∣∣∣∣∣ ∑
dj∈Gs

uj = k

 = k (4.8)

⇐⇒ ∀ groups s, sizes k,qk(1)
T1dj∈Gs = k((qk(0) + qk(1))

T1dj∈Gs), (4.9)

which are linear constraints on qk.

For notational convenience, we defined matrix Q ≜
[
q0(1) q1(1) q2(1) . . .

]
by concatenating

all relevant marginal probabilities. Each row in matrix Q consist of marginal probabilities of an

item being relevant when its corresponding group has different total relevant items. Therefore,

if we sum each row in Q we get the probability of the corresponding item being relevant which
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is the same probability in vector q in (Equation 4.11). Hence, q can be inferred from Q using

q = Q1.

The Disparate Treatment constraint enforces that exposure of two groups to be proportional

to their average utility. The constraint for group s and s′ can then be expressed as:

∑
k

1

k

 ∑
di∈Gs

Qi,k

∑
j

Pi,jvj

 =
∑
k

1

k

 ∑
di∈Gs′

Qi,k

∑
j

Pi,jvj


⇐⇒

∑
k

1

k

 ∑
di∈Gs

Qi,k −
∑

di∈Gs′

Qi,k

∑
j

Pi,jvj

 = 0

⇐⇒
∑
k

∑
i

1

k
Qi,k

(
1di∈Gs − 1di∈Gs′

)
︸ ︷︷ ︸

f

∑
j

Pi,jvj

 = 0

⇐⇒
(
(Qg) ◦ f

)T
Pv︸ ︷︷ ︸

LDT
s,s’(P,Q)

= 0

which is bilinear in Q and P variables. Note that ◦ is the Hadamard-product (element-wise)

operator. The vector f encodes the group membership: fi =



1 if di ∈ Gs

−1 if di ∈ Gs′

0 otherwise.

, and the vector

g is the weight ( 1k ) used for each column in matrix Q: gk = 1
k .
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The Disparate Impact constraint requires that the average “click-through rate” for two

groups be proportional to their average utility. This constraint similarly for groups s and s′ can

be expressed as:

∑
k

1

k

∑
di∈Gs

Qi,k

∑
j

Pi,jvj


 =

∑
k

1

k

∑
di∈Gs′

Qi,k

∑
j

Pi,jvj




⇐⇒
∑
k

1

k

∑
di∈Gs

Qi,k

∑
j

Pi,jvj

− 1

k

∑
di∈Gs′

Qi,k

∑
j

Pi,jvj


 = 0

⇐⇒

∑
i

(
1di∈Gs − 1di∈Gs′

)∑
k

1

k
Qi,k

∑
j

Pi,jvj


 = 0

⇐⇒ fT
(
(Qg) ◦Pv

)︸ ︷︷ ︸
LDI
s,s’(P,Q)

= 0

which is bilinear in Q and P variables.

The optimization in (Equation 4.11) can be modified to accept these fairness constraints. In

the new optimization we substitute q with Q1 and optimize over matrix Q:

max
θ

E
x,u∼P̃

[
max
P∈∆

min
Q∈Γ

(Q1)⊤Pv +
〈
Q1− u,

∑
l
θlX:,l

〉]
(4.10)

s.t. Ls,s’(P,Q)=0, ∀s, s′ ∈ S,
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4.4 Optimization

We solve the constrained minimax formulation in Definition 4.2.1 in Lagrangian dual form,

where we optimize the dual parameters θ ∈ RL×1 for the feature matching constraint of L

features by gradient descent. Rewriting the optimization in matrix notation yields:

max
θ

E
x,u∼P̃

[
max
P∈∆

min
0≤q≤1

q⊤Pv +
〈
q− u,

∑
l
θlX:,l

〉]
(4.11)

s.t. f⊤s Pv=τ, s ∈ S,

where: P(π) ∈ RM×M is a doubly stochastic matrix, and the value of cell Pj,k represents the

probability that πj = k; u ∈ RM×1 is a vector of true labels whose jth values is 1 when the item

j is relevant to the query, i.e., uj = 1 and 0 otherwise; q ∈ RM×1 is a probability vector of the

adversary’s estimation of each item being relevant; X:,l ∈ RM×1 denotes the lth feature of M

samples; S is the set of protected attributes; and v ∈ RM×1 is a vector containing the values of

position bias function for each position. To denote the Frobenius inner product between two

matrices ⟨., .⟩ is used, i.e., ⟨A,B⟩ =
∑

i,j Ai,jBi,j .

For optimization purposes, using strong duality, we push the minimization over q to the

outermost level in (Equation 4.11). Since the objective is non-smooth, for both P and q, we

add strongly convex prox-functions to make the objective smooth. Furthermore, to make our

approach handle feature sampling error, we add a regularization penalty to the parameter θ. To
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apply (Equation 4.11) on training data, we replace empirical expectation with an average over

all training samples. The new formulation is as follows:

min
{0≤qi≤1}Ni=1

max
θ

1

N

N∑
i=1

max
Pi∈∆

[
qi⊤Pivi −

〈
qi − ui,

∑
l
θlX

i
:,l

〉
+λf i

⊤
Pivi − µ

2

∥∥∥Pi
∥∥∥2
F
+
µ

2

∥∥∥qi
∥∥∥2
2

]
− γ

2
∥θ∥22 , (4.12)

where superscript i is the ith sample from N ranking problems in the training set. We

denote λ, γ and µ as the fairness penalty parameter (which can be adjusted to obtain different

trade-offs between fairness and utility, rather than strictly optimized), a regularization penalty

parameter and a smoothing penalty parameter, respectively. The inner maximization over P

and θ can be solved separately, given a fixed q. The maximization over θ has a closed-form

solution where the lth element of θ∗ is:

θ∗l = − 1

γN

N∑
i=1

〈
qi − ui,Xi

:,l

〉
. (4.13)

Independently from θ, we can solve the inner maximization over P for every training sample

using a projection technique. The optimal P for ith training sample (i.e., Pi∗) is:

Pi∗ =argmax
Pi∈∆

qi⊤Pivi + λf i
⊤
Pivi − µ

2

∥∥∥Pi
∥∥∥2
F

Pi∗ =argmin
Pi∈∆

µ

2

∥∥∥∥Pi − 1

µ
(qi + λf i)vi⊤

∥∥∥∥2
F

− 1

2µ

∥∥∥qivi⊤
∥∥∥2
F
. (4.14)
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As derived in (Equation 4.14), the minimization takes the form of minP≥0 ∥P−R∥2F , s.t. :

P1 = P⊤1 = 1, and can be interpreted as projecting matrix 1
µ(q

i+λf)vi⊤ into the set of doubly-

stochastic matrices. The projection from an arbitrary matrix R to the set of doubly-stochastic

matrices can be solved using the ADMM projection algorithm (Boyd et al., 2011).

Since each entry in q represents a probability, the outer optimization over q is solved using

the L-BFGS-B algorithm with a bounded constraint of the probability simplex (Byrd et al.,

1995). The algorithm optimizes the quadratic approximation of the objective function (using

limited memory Quasi-Newton) on the convex set with each iteration. In each update step, a

projection to the probability simplex is needed. Based on the above optimization, the adversary’s

optimal relevance probability q∗ can be obtained. Following (Equation 4.13) we compute the θ∗

over the optimal q∗. As weights for the features, we use the θ∗ that our model learns from this

optimization for making predictions for test examples. Algorithm 1 shows the steps for training.

Algorithm 1: The Fair-Robust LTR

Input: Training dataset D = {(Xi,ui)}Ni=1, fairness penalty parameter λ.
Output: θ∗,P∗,q∗

q← random initialization;
repeat

update θ by (Equation 4.13) with q.
update P by (Equation 4.14) with q.
update q by (Equation 4.12) with {P, θ}.

until convergence;
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4.4.1 Inference and Runtime Analysis

For prediction, we use θ and µ learned from training data while performing the optimization

in (Equation 4.12). After removing the constant terms, we solve a similar optimization problem

for test data. That is:

min
{0≤qi≤1}Ntest

i=1

1

N test

Ntest∑
i=1

max
Pi∈∆

[
qi⊤Pivi −

〈
qi,
∑

l
θ∗l X

i
:,l

〉
+ λf i

⊤
Pivi − µ

2

∥∥∥Pi
∥∥∥2
F
+
µ

2

∥∥∥qi
∥∥∥2
2

]
, (4.15)

where superscript i pertains to the ith ranking problem in the the test set of size N test. We

follow the steps for solving the optimization in training. Although we play a minimax game

between predictor and adversary in inference, we emphasize that there is no gradient learning

of θ as in training, and true relevance labels (u) are not used in inference. After convergence,

we use the resulting P∗ from the optimization to predict the ranking of items in the test set.

We employ the Hungarian algorithm (Kuhn, 1955) to solve the problem of matching items to

positions. Algorithm 2 shows the steps for inference.

4.4.1.1 Runtime Analysis.

In the training step, solving the optimization in (Equation 4.12) involves running a projected

gradient descent algorithm. In each iteration, it requires the computation of the gradient and

the projection to box constraints. The box constraint projection’s runtime is linear in terms

of the number of variables, hence costing O(NM). The gradient computation requires solving

for θ∗, which costs O(NML) from the dot product computations; and solving for P∗, which
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Algorithm 2: Inference Algorithm for Fair-Robust LTR

Input: Test dataset D = {(Xi,ui)}Ntest

i=1 , fairness penalty parameter λ, dual parameter
θ∗

Output: P∗,q∗, final rankings = HungarianAlg(P∗)
q← random initialization ;
repeat

update P by (Equation 4.14) with q.
update q by (Equation 4.12) with {P, θ}.

until convergence;

can be posed as a doubly-stochastic matrix projection. We employ an ADMM algorithm to

perform the projection to doubly stochastic matrix, which has linear convergence due to the

strong convexity of the objective (Deng and Yin, 2016). Each step inside the ADMM consists

of M projections to M -element simplex, hence costing O(M2) computations in total for N

ranking problems (Duchi et al., 2008). For the inference step, the Hungarian algorithm requires

a cubic runtime, O(M3). However, in the case of large M , given that exposure reduces with a

logarithmic function and lower ranks have very similar exposure, we find the ranking of items

using feature function (θ.X) and then run the Hungarian algorithm only for the top k ranked

items to satisfy fairness constraint for those items (k = 10). This reduces the complexity of the

algorithm from O(M3) to O(k3).

4.5 Experiments

In this section, we apply our fair adversarial ranking framework to the task of learning-to-rank

under group fairness constraints. In order to compare our proposed framework with existing

fair LTR solutions, we use simulated and real-world datasets to carry out in-depth empirical
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evaluations. The learning task is to determine the feature function in the training based on

the items’ ground truth utilities and fairness constraints. At testing time, this feature function

coupled with a penalty for fairness violation is used to determine the ranking for the items in

the test set with maximum utility while satisfying fairness constraints.

4.5.1 Fairness Benchmark Datasets

4.5.1.1 Setup

We perform experiments on three benchmark datasets where we follow steps discussed in

(Singh and Joachims, 2019) to adapt German, Adult, and COMPAS datasets to an LTR task.

These datasets are inherently biased, making them viable alternatives for evaluation when no

real world datasets exist for a fair LTR task. First, we split each dataset randomly into a

disjoint train and test set. Then from each train/test set, we construct a corresponding LTR

train/test set. For each query, we sample randomly with replacement a set of 10 candidates

each, representative of both relevant and irrelevant items, where, on average four individuals are

relevant. Each individual in the candidate set is a member of a group Gs based on its protected

attribute. The training data consists of 500 ranking problems. We evaluate our learned model

on 100 separate ranking problems serving as the test set. We repeat this process 10 times and

report the 95% confidence interval in the results. The regularization constant γ and smoothing

penalty parameter µ in (Equation 4.12) are chosen by 3-fold cross validation. We describe

datasets used in our experiments:

• UCI Adult, census income dataset (Dheeru and Karra Taniskidou, 2017). The goal is to

predict whether income is above $50K/yr on the basis of census results.
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TABLE III: Dataset characteristics.

Dataset n Features Attribute

Adult 45,222 12 Gender
COMPAS 6,167 10 Race
German 1,000 20 Gender

• The COMPAS criminal recidivism risk assessment dataset (Larson et al., 2016) is designed to

predict whether a defendant is likely to re-offend based on criminal history.

• UCI German dataset (Dheeru and Karra Taniskidou, 2017). Based on personal information

and credit history, the goal is to classify good and bad credit.

Table III shows the statistics of each dataset with their protected attributes.

4.5.1.2 Baseline methods

To evaluate the performance of our model, we compare it against three different baselines

that have similarities to and differences from our model: FAIR-PGRank (Singh and Joachims,

2019) and DELTR (Zehlike and Castillo, 2020) are in-processing, LTR methods, like ours;

the Post-Processing method of (Singh and Joachims, 2018) employs the fairness constraint

formulation that we build our optimization framework based on. We also add a Random baseline

that ranks items in each query randomly to give context to NDCG. We discuss baseline methods

in more details1:

1We use the implementation from https://github.com/ashudeep/Fair-PGRank for all baselines.

https://github.com/ashudeep/Fair-PGRank
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• Post Processing (Post-Proc) (Singh and Joachims, 2018) In order to make a fair com-

parison with in-processing LTR approaches, we first learn a linear regression model that is

trained on all query-item sets in the training data and predicts the relevance of an item to a

query in test set. Then, these estimated relevances are used as input to the linear program

optimization described in (Singh and Joachims, 2018) with a demographic parity constraint

for group fairness.

• Fair Policy Ranking (Fair-PGRank) (Singh and Joachims, 2019) An end-to-end, in-

processing LTR approach that uses a policy gradient method, directly optimizing for both

utility and fairness measures.

• Reducing Disparate Exposure (DELTR) (Zehlike and Castillo, 2020) An in-processing

LTR method optimizing a weighted sum of a loss function and a fairness criterion. The loss

function is a cross entropy designed for ranking (Cao et al., 2007) and fairness objective is a

squared hinge loss based on disparate exposure.

4.5.1.3 Evaluation Metrics

We use the normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2002),

as the utility measure. This is defined as: NDCG(π) = DCG(π)/Z, where Z is the DCG for

ideal ranking and is used to normalize the ranking so that a perfect ranking would give a NDCG

score of 1.
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Figure 12: Average NDCG versus average difference of demographic parity (DP) on test
samples, for increasing degrees of fairness penalty λ in each method. Fair-Robust: λ ∈ [0, 20],
Fair-PGRank: λ ∈ [0, 20], DELTR: λ ∈ [0, 106], Post-Proc: λ ∈ [0, 0.2].

For the fairness evaluation in our approach we use demographic parity as our fairness violation

metric which is based on disparity of average exposure across two groups:

D̂group(P) = |Ex(G0|P)− Ex(G1|P)|. (4.16)

4.5.1.4 Results

Figure 12 shows the performance of our model (Fair-Robust) against baselines on the three

benchmark datasets. We observe a trade-off between fairness and utility in both Fair-PGRank

and Fair-Robust, i.e., as we increase the fairness penalty parameter (λ), demographic parity

difference (as a measure of fairness violation) and NDCG both drop. While DELTR and

Post-Proc achieve comparable NDCG when λ = 0, they fail to satisfy demographic parity as

we increase λ and are unable to provide a sufficient utility-fairness trade-off when high levels of

fairness are desired. In all three datasets, Fair-Robust outperforms Fair-PGRank in terms of
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ranking utility when fairness is a priority. When comparing the utility-fairness trade-off between

the two approaches, we observe that Fair-Robust can retain higher NDCG in high levels of

fairness and provides a preferable trade-off. One notable point is that, even in a noisy dataset

like the COMPAS dataset, our approach performs better than other methods due to its robustness.

4.5.1.5 Robustness Test

One key benefit of our approach is its robustness to label noise in the learning process. This

allows our method can be trained on data with noisy labels and outliers, and still perform well on

the test data. To test this property, we repeat the previous experiment with noise added to the

training data. After sampling rankings for the training and test sets, we randomly flip x% of the

labels in each ranking problem in the training set. In our experiments, we test various amounts

of noise in the training data where x can be 20%, 30%, or 40%. Figure 13 shows the results for

the robustness test. Similar to the previous experiment, we observe a trade-off between fairness

and utility for Fair-Robust. As the amount of the noise increases Fair-PGRank performs

poorly and can’t maintain its trade-off. Note that when λ = 0, Fair-PGRank still performs

well but for other values of λ its NDCG gets close to random ranking. We refer the reader to

the appendix for more results on the robustness property.

4.5.2 Microsoft Learning to Rank Dataset

4.5.2.1 Setup

In the previous experiments, we used datasets with inherent demographic biases but the

LTR tasks were simulated and constructed from a classification task. To better understand

the effectiveness of our approach, we evaluate its performance on a real world LTR dataset.
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Due to the lack of standard datasets with demographic biases for LTR task, we use Microsoft’s

Learning to Rank dataset (Qin and Liu, 2013). We follow the steps discribed in (Yadav et al.,

2021) to pre-process the dataset.In this experiment, we compare our method to Fair-PGRank,

as both methods are able to trade-off between fairness and utility. Additionally, we include a

random baseline, which sorts each item in a query randomly, to give context to NDCG. Similar

to the previous experiments, we use NDCG as the utility measure and demographic parity as our

fairness violation metric, which is based on the disparity of average exposure across two groups.

4.5.2.2 Results

Figure 14 shows the fairness and accuracy trade-off on the test set. With large fairness

regularization, Fair-PGRank drops below a random ranking in terms of NDCG, making it

inconsistent. This plot shows that Fair-Robust smoothly trades-off group fairness for NDCG.

Fair-PGRank’s NDCG and group exposure, on the other hand, deteriorate for increasing

regularization strength, as (Yadav et al., 2021) also observed.

4.6 Conclusions

In this work, we developed a new LTR system that achieves fairness of exposure for protected

groups while maximizing utility to the users. Our adversarial approach constructs a minimax

game with the ranker player choosing a distribution over rankings constrained to provide fairness

while maximizing utility and an adversary player choosing a distribution of item relevancies that

minimizes utility while being similar to training data properties. We show that our method is

able to trade-off between utility and fairness much better at high levels of fairness than existing

baseline methods. Our work addresses the problem of providing more robust fairness given a
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chosen fairness criterion, but does not answer the broader question of which fairness criterion is

appropriate for a particular ranking application. Since optimizing one fairness criterion can be

detrimental to other fairness criteria, this is an important practical consideration with societal

implications. More extensive evaluations based on incorporating other fairness metrics, such as

disparate treatment, and generalization of this approach beyond binary utility are two important

future directions.
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Figure 13: Robustness test on German, Adult and COMPAS datasets with varying degrees of noise
in the training data.
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Figure 14: Average NDCG versus average difference of demographic parity (DP) on test samples,
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PGRank: λ ∈ [0, 10].



CHAPTER 5

Superhuman Fairness

(This chapter is based on a paper published as “Superhuman Fairness” (Memarrast et al., 2023b)

in the International Conference on Machine Learning 40 (ICML 2023).)

5.1 Introduction

impossibility results prevent multiple common group fairness properties from being simulta-

neously satisfied (Kleinberg et al., 2016). Thus, no set of decisions can be universally fair to all

groups and individuals for all notions of fairness. Instead, specified weightings, or trade-offs,

of different criteria are often optimized (Liu and Vicente, 2022). Identifying an appropriate

trade-off to prescribe to these fairness methods is a daunting task open to application-specific

philosophical and ideological debate that could delay or completely derail the adoption of

algorithmic methods.

82



83

Figure 15: Three sets of decisions (black
dots) with different predictive performance
and group disparity values defining the
sets of 100%-, 67%-, and 33%-superhuman
fairness-performance values (red shades)
based on Pareto dominance.

We consider the motivating scenario of multiple (error-prone) stakeholders with different

notions of fairness and desired performance-fairness trade-offs collaboratively producing decisions.

Preference elicitations (Hiranandani et al., 2020) is of limited use since knowing the stakeholder

tradeoffs still leaves the question of how different stakeholders preferences should be prioritized.

Rather than seeking optimal decisions for specific performance-fairness (meta-)trade-offs, we

propose a more modest, yet more practical objective: produce decisions preferred by all

stakeholders over human-produced decisions with maximal frequency. This provides

an opportunity for superhuman decisions that Pareto dominate human decisions across

predictive performance and fairness measures (Figure Figure 15) without identifying an explicit

desired trade-off. We argue that for many algorithmic fairness tasks, frequently outperforming
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human decisions across all relevant predictive performance and fairness measures may be sufficient

for replacing human decision-makers with algorithmic decision-makers.

To the best of our knowledge, this paper is the first to define fairness objectives for supervised

machine learning with respect to noisy human decisions rather than using prescriptive trade-offs

or hard constraints. We leverage and extend a recently-developed imitation learning method

for subdominance minimization (Ziebart et al., 2022). Instead of using the subdominance

to identify a target trade-off, as previous work does in the inverse optimal control setting

of sequential decision-making to estimate a cost function, we use it to directly optimize our

fairness-aware classifier. We develop a method based on policy gradient optimization (Sutton and

Barto, 2018) that allows flexible classes of probabilistic decision policies (e.g., aware or unaware

of protected group membership status) to be optimized for given sets of performance/fairness

measures and demonstrations.

We conduct extensive experiments on standard fairness datasets (Adult and COMPAS) using

accuracy as a performance measure and three conflicting fairness definitions: Demographic

Parity (Calders et al., 2009), Equalized Odds (Hardt et al., 2016), and Predictive Rate Parity

(Chouldechova, 2017a). Though our motivation is to outperform human decisions, we employ a

synthetic decision-maker with differing amounts of label and group membership noise to identify

sufficient conditions for superhuman fairness of varying degrees. We find that our approach

achieves high levels of superhuman performance that increase rapidly with reference decision

noise and significantly outperform the superhumanness of other methods that are based on more

narrow fairness-performance objectives.
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5.2 Fairness, Elicitation, and Imitation

5.2.1 Group Fairness Measures

Group fairness measures are primarily defined by confusion matrix statistics (based on labels

yi ∈ {0, 1} and decisions/predictions ŷi ∈ {0, 1} produced from inputs xi ∈ RM ) for examples

belonging to different protected groups (e.g., ai ∈ {0, 1}).

We focus on three prevalent fairness properties in this paper:

• Demographic Parity (DP) (Calders et al., 2009) requires equal positive rates across protected

groups:

P(Ŷ = 1|A = 1) = P(Ŷ = 1|A = 0);

• Equalized Odds (EqOdds) (Hardt et al., 2016) requires equal true positive rates and false

positive rates across groups, i.e.,

P(Ŷ =1|Y =y,A=1) = P(Ŷ =1|Y =y,A=0), y ∈ {0, 1};

• Predictive Rate Parity (PRP) (Chouldechova, 2017a) requires equal positive predictive

value (ŷ = 1) and negative predictive value (ŷ = 0) across groups:

P(Y =1|A=1, Ŷ = ŷ) = P(Y =1|A=0, Ŷ = ŷ), ŷ ∈ {0, 1}.
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Violations of these fairness properties can be measured as differences:

D.DP(ŷ,a) =

∣∣∣∣∣
∑N

i=1 I [ŷi=1, ai=1]∑N
i=1 I [ai=1]

−
∑N

i=1 I [ŷi=1, ai=0]∑N
i=1 I [ai=0]

∣∣∣∣∣; (5.1)

D.EqOdds(ŷ,y,a) = max
y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [ŷi=1, yi=y, ai=1]∑N
i=1 I [ai=1, yi=y]

−
∑N

i=1 I [ŷi=1, yi=y, ai=0]∑N
i=1 I [ai=0, yi=y]

∣∣∣∣∣; (5.2)

D.PRP(ŷ,y,a) = max
y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [yi=1, ŷi=y, ai=1]∑N
i=1 I [ai=1, ŷi=y]

−
∑N

i=1 I [yi=1, ŷi=y, ai=0]∑N
i=1 I [ai=0, ŷi=y]

∣∣∣∣∣. (5.3)

5.2.2 Preference Elicitation & Imitation Learning

Preference elicitation (Chen and Pu, 2004) is one natural approach to identifying desirable

performance-fairness trade-offs. Preference elicitation methods typically query users for their

pairwise preference on a sequence of pairs of options to identify their utilities for different

characteristics of the options. This approach has been extended and applied to fairness measure

elicitation (Hiranandani et al., 2020), allowing efficient learning of linear (e.g., (Equation 5.4))

and non-linear measures from finite and noisy preference feedback.

min
θ

Eŷ∼Pθ

[
loss(ŷ,y) + αDPD.DP(ŷ,a) + αOddsD.EqOdds(ŷ,y,a) + αPRPD.PRP(ŷ,y,a)

]
. (5.4)

When decisions are made jointly by multiple stakeholders (Donaldson and Preston, 1995) rather

than a single individual, preference elicitation may not be very informative. Each stakeholder’s

preferences could be elicited, for example, but how those sets of preferences should be prioritized
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to determine joint outcomes can remain unclear without strong additional assumptions about

the decision-making process (e.g., outcomes determined by a majority vote) (Dowling et al.,

2016).

Imitation learning (Osa et al., 2018) is a type of supervised machine learning that seeks

to produce a general-use policy π̂ based on demonstrated trajectories of states and actions,

ξ̃ = (s̃1, ã1, s̃2, . . . , s̃T ). Inverse reinforcement learning methods (Abbeel and Ng, 2004; Ziebart

et al., 2008) seek to rationalize the demonstrated trajectories as the result of (near-) optimal

policies on an estimated cost or reward function. Feature matching (Abbeel and Ng, 2004) plays

a key role in these methods, guaranteeing if the expected feature counts match, the estimated

policy π̂ will have an expected cost under the demonstrator’s unknown fixed cost function

weights w̃ ∈ RK equal to the average of the demonstrated trajectories:

Eξ∼π̂

[
fk(ξ)

]
=

1

N

N∑
i=1

fk

(
ξ̃i

)
, ∀k (5.5)

=⇒ Eξ∼π̂

[
costw̃(ξ)

]
=

1

N

N∑
i=1

costw̃

(
ξ̃i

)
,

where fk(ξ) =
∑

st∈ξ fk (st).

(Syed and Schapire, 2007) seeks to outperform the set of demonstrations when the signs of

the unknown cost function are known, w̃k ≥ 0, by making the inequality,

Eξ∼π

[
fk(ξ)

]
≤ 1

N

N∑
i=1

fk

(
ξ̃i

)
, ∀k, (5.6)
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strict for at least one feature. Subdominance minimization (Ziebart et al., 2022) seeks to produce

trajectories that outperform each demonstration by a margin:

fk(ξ) +mk ≤ fk(ξ̃i),∀i, k, (5.7)

under the same assumption of known cost weight signs. However, since this is often infeasible,

the approach instead minimizes the subdominance, which measures the α-weighted violation of

this inequality:

subdomα(ξ, ξ̃) ≜
∑
k

[
αk

(
fk(ξ)− fk(ξ̃)

)
+ 1

]
+

, (5.8)

where [f(x)]+ ≜ max(f(x), 0) is the hinge function and the per-feature margin has been

reparameterized as α−1
k . Previous work (Ziebart et al., 2022) has employed subdominance

minimization in conjunction with inverse optimal control:

min
w

min
α

N∑
i=1

K∑
k=1

subdomα(ξ
∗(w), ξ̃i),where:

ξ∗(w) = argmin
ξ

∑
k

wkfk(ξ),

learning the cost function parameters w for the optimal trajectory ξ∗(w) that minimizes

subdominance. One contribution of this paper is extending subdominance minimization to the

more flexible prediction models needed for fairness-aware classification that are not directly

conditioned on cost features or performance/fairness metrics.
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5.3 Subdominance Minimization for Improved Fairness-Aware

Classification

We approach fair classification from an imitation learning perspective (Ziebart et al., 2022).

We assume vectors of (human-provided) reference decisions are available that may have been

produced collaboratively by multiple stakeholders with competing predictive performance-fairness

tradeoffs. Our goal is to construct a fairness-aware classifier that outperforms reference decisions

on all performance and fairness measures on withheld data as frequently as possible, which also

provides guarantees to all stakeholders.

5.3.1 Superhumanness and Subdominance

We consider reference decisions ỹ = {ỹj}Mj=1 that are drawn from an (unknown) human

decision-making process or baseline method P̃, on a set of M items, XM×L = {xj}Mj=1, where

L is the number of attributes in each of M items xj . Group membership attributes am from

vector a indicate to which group item m belongs.

The predictive performance and fairness of decisions ŷ for each item are assessed based on

ground truth y and group membership a using a set of predictive loss and unfairness measures1

{fk(ŷ,y,a)} (e.g., Equation 5.1, Equation 5.2, Equation 5.3). Without loss of generality, we

assume that larger values for these measures are less desirable. Ideally, the set of these measures

should cover the bases of all stakeholder preference functions (i.e., stakeholder cost functions for

1These measures take the place of features used to define cost/reward function in imitation learning

methods. We instead use features to describe the inputs to our fairness-aware decision model, P̂θ.
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Figure 16: A Pareto frontier for possible
P̂θ (blue) optimally trading off predictive
performance (e.g., inaccuracy) and group
unfairness. The model-produced decision
(red point) defines dominance boundaries
(solid red) and margin boundaries (dashed
red), which incur subdominance (maroon
lines) on three examples.

evaluating different vectors of decisions can be expressed as summed monotonic transformations

of {fk(ŷ,y,a)} measures).

Definition 5.3.1. A fairness-aware classifier is considered γ-superhuman for a given set of

predictive loss and unfairness measures {fk} if its decisions ŷ satisfy:

P
(
f (ŷ,y,a) ⪯ f (ỹ,y,a)

)
≥ γ.

If strict Pareto dominance is required to be γ-superhuman, which is often effectively true for

continuous domains, then by definition, at most (1− γ)% of human decision makers could be

γ-superhuman. However, far fewer than (1−γ) may be γ-superhuman if pairs of human decisions

do not Pareto dominate one another in either direction (i.e., neither f (ỹ,y,a) ⪯ f
(
ỹ′,y,a

)
nor f

(
ỹ′,y,a

)
⪯ f (ỹ,y,a) for pairs of human decisions ỹ and ỹ′). From this perspective,
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any decisions with γ-superhuman performance more than (1 − γ)% of the time exceed the

performance limit for the distribution of human demonstrators.

Unfortunately, directly maximizing γ is difficult in part due to the discontinuity of Pareto

dominance (⪯). The subdominance (Ziebart et al., 2022) serves as a convex upper bound for

non-dominance in each metric {fk} and on 1− γ in aggregate:

subdomk
αk
(ŷ, ỹ,y,a) ≜

[
αk

(
fk(ŷ,y,a)− fk(ỹ,y,a)

)
+ 1
]
+
.

subdomα(ŷ, ỹ,y,a) ≜
∑
k

subdomk
αk
(ŷ, ỹ,y,a). (5.9)

Given N vectors of reference decisions as demonstrations, Ỹ = {ỹi}Ni=1, the subdominance for

decision vector ŷ with respect to the set of demonstrations is1

subdomα(ŷ, Ỹ ,y,a) =
1

N

∑
ỹ∈Ỹ

subdomα(ŷ, ỹ,y,a),

where ŷi is the predictions produced by our model for the set of items Xi, and Ŷ is the set of

these prediction sets, Ŷ = {ŷi}Ni=1. The subdominance is illustrated by Figure 16. Following

concepts from support vector machines (Cortes and Vapnik, 1995), reference decisions ỹ that

1For notational simplicity, we assume all demonstrated decisions ỹ ∈ Ỹ correspond to the same M
items represented in X. Generalization to unique X for each demonstration is straightforward.
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actively constrain the predictions ŷ in a particular feature dimension, k, are referred to as

support vectors and denoted as:

ỸSVk
(ŷ, αk) =

{
ỹ|αk(fk(ŷ)− fk(ỹ)) + 1 ≥ 0

}
.

5.3.2 Performance-Fairness Subdominance Minimization

We consider probabilistic predictors Pθ : XM → ∆YM that make structured predictions

over the set of items in the most general case, but can also be simplified to make conditionally

independent decisions for each item.

Definition 5.3.2. The minimally subdominant fairness-aware classifier P̂θ has model parameters

θ chosen by:

argmin
θ

min
α⪰0

Eŷ|X∼Pθ

[
subdomα,1

(
ŷ, Ỹ ,y,a

)]
+ λ∥α∥1.

Hinge loss slopes α ≜ {αk}Kk=1 are also learned from the data during training. For the

subdominance of the kth measure, αk indicates the degree of sensitivity to how much the

algorithm fails to sufficiently outperform demonstrations in that measure. When αk value is

higher, reducing underperformance on that measure minimizes the overall subdominance more

than reducing underperformance on other measures.

The bi-level optimization of θ and α differs from single-level support vector machine

optimization (of θ alone), which is a convex optimization problem (Cortes and Vapnik, 1995).
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Instead, subdominance is a quasi-convex function, which similarly implies that there are no

local optima as a function of the realized predictive performance/fairness measures.

Theorem 5.3.3. The αk-minimized subbdominance,

∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk≥0

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
, (5.10)

is a quasiconvex function in terms of the set of measures, {fk(ŷ,y,a)}.

We use the gradient of the expected subdominance with respect to θ and α to update these

variables iteratively, and after convergence, the best learned weights θ∗ are used in the final

model P̂θ∗ . Though subdominance minimization is not necessarily quasiconvex in terms of model

parameters θ, particularly for complex, nonlinear models, stochastic gradient methods are often

effective in avoiding local optima. A commonly used linear model like logistic regression can be

used for P̂θ to simplify the overall optimization.

Theorem 5.3.4. The gradient of expected subdominance under P̂θ with respect to the set of

reference decisions {ỹi}Ni=1 is:

∇θEŷ|X∼P̂θ

∑
k

Γk

(
ŷ, Ỹ ,y,a

)
= Eŷ|X∼P̂θ

[∑
k

Γk(ŷ, Ỹ ,y,a)

∇θ log P̂θ(ŷ|X)

]
,
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where the optimal αk for each Γk (Equation 5.10) is obtained from:

αk = argmin
α
(m)
k

m such that fk (ŷ) + λ ≤ 1

m

m∑
j=1

fk

(
ỹ(j)

)
,

using α
(j)
k = 1

fk(ŷ(j))−fk(ỹ(j))
to represent the αk value that would make the demonstration with

the jth smallest fk measure, ỹ(j), a support vector with zero subdominance.

Using gradient descent, we update the model weights θ using an approximation of the

gradient based on a set of sampled predictions ŷ ∈ Ŷ from the model P̂θ:

θ ← θ + η

∑
ŷ∈Ŷ

∑
k

Γk(ŷ, Ỹ ,y,a)

∇θ log P̂θ(ŷ|X)

 ,

We show the steps for training our model in Algorithm 3. Reference decisions {ỹi}Ni=1 from

a human decision-making process or baseline method P̃ are provided as input to the algorithm.

θ is set to an initial value. In each iteration of the algorithm, we first sample a set of model

predictions {ŷi}Ni=1 from P̂θ(.|Xi) for the matching items used for reference decisions {ỹi}Ni=1.

We then find the new θ (and α) based on the algorithms discussed in Theorem 5.3.4.

5.3.3 Generalization Bounds

A fairness-aware classifier with a relatively small number of support vectors has important

generalization guarantees under iid assumptions.

Theorem 5.3.5. A classifier P̂θ from a family with a convex realizable space of measures

{fk(ŷ, ỹ,y,a)} minimizing
∑

i subdomα (ŷ, ỹi,yi,a) on a set of N iid reference decisions with
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Algorithm 3: Subdominance policy gradient optimization

Draw N set of reference decisions {ỹi}Ni=1 from a human decision-maker or baseline
method P̃. Initialize: θ ← θ0;

while θ not converged do

Sample model predictions {ŷi}Ni=1 from P̂θ(.|Xi) for the matching items used in
reference decisions {ỹi}Ni=1;
for k ∈ {1, ...,K} do

Sort reference decisions {ỹi}Ni=1 in ascending order by kth measure value fk(ỹi):
{ỹ(j)}Nj=1;

Compute α
(j)
k = 1

fk(ỹ(j))−fk(ŷ(j))
;

αk = argmin
α
(m)
k

m such that

fk (ŷ) + λ ≤ 1
m

∑m
j=1 fk

(
ỹ(j)

)
;

Compute Γk(ŷi, Ỹ ,y,a);

θ ← θ + η
N

∑
i

(∑
k Γk(ŷi, Ỹ ,y,a)

)
∇θ log P̂θ(ŷi|Xi);

support vector sets
{
ỸSVk

(ŷ, αk)
}

is on average γ-superhuman on the population distribution

with: γ = 1− 1
N

∥∥∥⋃K
k=1 ỸS Vk

(ŷ, αk)
∥∥∥.

The proof for this generalization bound (see 5.4) is an extension to our setting of the gener-

alization bound based on support vectors developed for inverse optimal control subdominance

minimization (Ziebart et al., 2022). It requires that the realizable set of measures {fk(ŷ,y, a)}

is convex and that the (deterministic) Pθ with measures globally minimizing subdominance can

be found. This may be unrealistic for complex Pθ models (e.g., multilayer neural networks).

Importantly, superhuman performance provides comparative satisfaction guarantees for

stakeholders. Specifically, stakeholders will prefer the algorithmic decisions with at least γ

frequency for a fairly wide range of cost functions defined in terms of the measures {fk(ŷ,y, a)}.
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Corollary 5.3.6. For any stakeholder with a cost function, cost(f ,X) such that:

f1 ⪯ f2 =⇒ cost(f1,X) ≤ cost(f2,X),

a γ-superhuman classifier will be preferable in expectation with probability at least:

P
(
cost(f(ŷ,y,a), X) ≤ cost(f(ỹ,y,a)),X)

)
≥ γ.

5.4 Proofs of Theorems

Proof of Theorem 5.3.3. We first establish that the average αk-minimized subdominance of a

single measure k,

1

N

∑
ỹ

min
αk

subdomk
αk
(ŷ, ỹ,y,a) =

1

N

∑
ỹ

[
α∗
k

(
f̂k − fk(ỹ,y,a)

)
+ 1

]
+

., (5.11)

is a monotonic (increasing) function of f̂k ≜ fk(ŷ,y,a).

When α∗
k ≥ 0 is nonzero, it is minimized by defining a margin boundary at the largest

support vector, ỹ(j):

α∗
k =

1

fk(ỹ(j),y,a)− f̂k
.

When summed over all examples, (Equation 5.11) can be expressed as:

j

N


(
f̂k − fk(ỹ(1:j),y,a)

)
fk(ỹ(j),y,a)− f̂k

+ 1

 =
j

N


(
fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
fk(ỹ(j),y,a)− f̂k

 . (5.12)
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From the left-hand side of (Equation 5.12), we can see that when f̂k is equal to the average

features of the j (smallest) support vectors, fk(ỹ(1:j),y,a), the subdominance is equal to

the support vector frequency (j/N). This is also precisely the value of f̂k at which a new

support vector with measure value fk(ỹ(j+1),y,a), is added. Starting from the left-hand side

of (Equation 5.12), we show that this has the same value of j/N for the subdominance when

f̂k = fk(ỹ(1:j),y,a):

j + 1

N

(
fk(ỹ(1:j),y,a)− fk(ỹ(1:j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)
+ 1

)

=
j + 1

N

(
fk(ỹ(1:j),y,a)− fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)

=
j + 1

N

(
−fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)

=
1

N

(
−(j + 1)fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a) + jfk(ỹ(j+1),y,a)

fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
(a)
=

1

N

(
−jfk(ỹ(1:j),y,a) + jfk(ỹ(j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)
=

j

N
, (5.13)

where step (a) follows from (j + 1)fk(ỹ(1:j+1),y,a)− fk(ỹ(j+1),y,a) = jfk(ỹ(1:j). This shows

that at its non-smooth points, the subdominance is not decreasing.

Differentiating the right-hand side of (Equation 5.12) yields:

j


(
fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
(fk(ỹ(j),y,a)− f̂k)2

 , (5.14)
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which is nonnegative as long as fk(ỹ(j)) ≥ fk(ỹ(1:j),y,a), a condition that is always true by

definition of the ordered support vectors. Thus, since subdominance is non-decreasing at both its

smooth and nonsmooth portions, it is a monotonic (increasing) function of f̂k in each dimension

k.

Since the per-measure subdominances are independent and combined via summation over

all the dimensions k to form the entire subdominance, the sublevel sets must be convex, and the

subdominance overall is therefore a quasiconvex function of f̂ .

Proof of Theorem 5.3.4. The gradient of the training objective with respect to model parameters

θ is:

∇θEŷ|X∼P̂θ


∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
 = Eŷ|X∼P̂θ

[∑
k

Γk(ŷ, Ỹ ,y,a)

∇θ log P̂θ(ŷ|X)

]
,

which follows directly from a property of gradients of logs of function:

∇θ log P̂(ŷ|X) =
1

P̂(ŷ|X)
∇θP̂(ŷ|X) =⇒ ∇θP̂θ(ŷ|X) = P̂(ŷ|X)∇θ log P̂(ŷ|X). (5.15)

We note that this is a well-known approach employed by policy-gradient methods in reinforcement

learning (Sutton and Barto, 2018).

Next, we consider how to obtain the α−minimized subdominance for a particular tuple

(ŷ,Ỹ ,y,a), Γk

(
ŷ, Ỹ ,y,a

)
= minαk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
, analytically.
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First, we note that subdomk
αk

(
ŷ, Ỹ ,y,a

)
+ λkαk is comprised of hinged linear functions of

αk, making it a convex and piece-wise linear function of αk. This has two important implications:

(1) any point of the function for which the subgradient includes 0 is a global minimum of the

function (Boyd and Vandenberghe, 2004); (2) an optimum must exist at a corner of the function:

αk = 0 or where one of the hinge functions becomes active:

αk(fk(ŷi)− fk(ỹi)) + 1 = 0 =⇒ αk =
1

fk(ỹi)− fk(ŷi)
. (5.16)

The subgradient for the jth of these points (ordered by fk value from smallest to largest and

denoted fk(ỹ
(j)) for the demonstration) is:

∂αk
subdomk

αk

(
ŷ, Ỹ ,y,a

) ∣∣∣
αk=(fk(ŷ)−fk(ỹ(j)))−1

= ∂αk

 1

N

j∑
i=1

[
αk

(
fk(ŷ)− fk(ỹ(i))

)
+ 1

]
+

+ λαk


= λ+

1

N

j−1∑
i=1

(
fk(ŷ)− fk(ỹ(i))

)
+
[
0, fk(ŷ)− fk(ỹ(j))

]
,

where the final bracketed expression indicates the range of values added to the constant value

preceding it.

The smallest j for which the largest value in this range is positive must contain the 0 in its

corresponding range, and is thus the provides the j value for the optimal αk value.

Proof of Theorem 5.3.5. We first recall generalization guarantees for support vector machines

(SVMs) (Cortes and Vapnik, 1995) based on leave-one-out cross validation (LOOCV) that our

approach leverages. For support vector machines, examples that are not support vectors incur
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zero loss and do not actively constrain the SVM parameters. Thus, when these examples are

removed, the decision boundary does not change and therefore no cross validation loss is incurred

on any left-out example during LOOCV. Due to this, the support vector frequency is an upper

bound on the leave-one-out cross validation error, which is an (almost) unbiased estimate of the

generalization inaccuracy (Vapnik and Chapelle, 2000).

Since subdominance is quasiconvex instead of convex, this analysis is slightly more compli-

cated. Specifically, it requires the set of realizable f measures to be convex. The intersection of

the sublevel sets of the quasiconvex subdominance (Theorem 5.3.3 with a convex set of feasible

measures is also convex, so the constrained subdominance minimization problem (minimizing

subdominance over the set of realizable features for the family of possible Pθ) is also quasiconvex.

As a result, no local optima exist that are not global optima. Since the non-support vectors

do not actively constrain the global optima, removing them does not change the global optima

and therefore they do not contribute any loss to the leave-one-out cross validation error. The

remaining argument then follows directly from the SVM LOOCV analysis.

5.5 Experiments

The goal of our approach is to produce a fairness-aware prediction method that outperforms

reference (human) decisions on multiple fairness/performance measures. In this section, we
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discuss our experimental design to synthesize reference decisions with varying levels of noise,

evaluate our method, and provide comparison baselines.1

5.5.1 Training and Testing Dataset Construction

To emulate human decision-making with various levels of noise, we add noise to benchmark

fairness datasets and apply fair learning methods over repeated randomized dataset splits. We

describe this process in detail in the following section.

5.5.1.0.1 Datasets

We perform experiments on two benchmark fairness datasets:

• UCI Adult dataset (Dheeru and Karra Taniskidou, 2017) considers predicting whether a

household’s income exceeds $50K/yr based on census data. Group membership is based on

gender. The dataset consists of 45,222 items.

• COMPAS dataset (Larson et al., 2016) considers predicting recidivism with group membership

based on race. It consists of 6,172 examples.

5.5.1.1 Partitioning the data

We first split the entire dataset randomly into a disjoint train (train-all) and test

(test-all) set of equal size. The test set (test-all) is entirely withheld from the train-

ing procedure and ultimately used solely for evaluation. To produce each demonstration (a

vector of reference decisions), we split the (train-all) set randomly into a disjoint train

(train-demo) and test (test-demo) set of equal size.

1Our code is publicly available at https://github.com/omidMemari/superhumn-fairness.

https://github.com/omidMemari/superhumn-fairness
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5.5.1.2 Noise insertion

We randomly flip ϵ% of the ground truth labels y and group membership attributes a to

add noise to our demonstration-producing process.

5.5.1.3 Fair classifier P̃

Using the noisy data, we provide existing fairness-aware methods with labeled train-demo

data and unlabeled test-demo to produce decisions on the test-demo data as demonstrations

ỹ. Specifically, we employ:

• The Post-processing method of (Hardt et al., 2016), which aims to reduce both prediction

error and {demographic parity or equalized odds} at the same time. We use demographic

parity as the fairness constraint. We produce demonstrations using this method for Adult

dataset.

• Robust fairness for logloss-based classification (Rezaei et al., 2020) employs distribu-

tional robustness to match target fairness constraint(s) while robustly minimizing the log

loss. We use equalized odds as the fairness constraint. We employ this method to produce

demonstrations for COMPAS dataset.

We repeat the process of partitioning train-all N = 50 times to create randomized partitions

of train-demo and test-demo and to then produce a set of demonstrations {ỹ}50i=1.
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5.5.2 Evaluation Metrics and Baselines

5.5.2.1 Predictive Performance and Fairness Measures

Our focus for evaluation is on outperforming demonstrations in multiple fairness and

performance measures. We use K = 4 measures: inaccuracy (Prediction error), difference

from demographic parity (D.DP), difference from equalized odds (D.EqOdds), difference from

predictive rate parity (D.PRP).

5.5.2.2 Baseline methods

As baseline comparisons, we train five different models on the entire train set (train-all)

and then evaluate them on the withheld test data (test-all):

• The Post-processing model of (Hardt et al., 2016) with {demographic parity or equalized

odds} as the fairness constraint (post proc dp and post proc eqodds).

• The Robust Fair-logloss model of (Rezaei et al., 2020) with {demographic parity or equalized

odds} as the fairness constraint (fair logloss dp and fair logloss eqodds).

• The Multiple Fairness Optimization framework of (Hsu et al., 2022) which is designed to

satisfy three conflicting fairness measures {demographic parity, equalized odds, and predictive

rate parity} to the best extent possible (MFOpt).

5.5.2.3 Hinge Loss Slopes

As discussed previously, each αk value corresponds to the hinge loss slope, which defines the

sensitivity of produced decision not sufficiently outperforming the demonstrations on the kth
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measure. When the αk is large, the model heavily weights support vector reference decisions for

that particular k when minimizing subdominance. We report these values in our experiments.

5.5.3 Superhuman Model Specification and Updates

We use a logistic regression model Pθ0 with first-order moment feature functions, ϕ(y,x) =

[x1y, x2y, . . . xmy]
⊤, and weights θ applied independently on each item as our decision model.

During the training process, we update the model parameter θ to reduce subdominance.

5.5.3.1 Sample from model

In each iteration of the algorithm, we first sample prediction vectors {ŷi}Ni=1 from P̂θ(.|Xi)

for the matching items used in demonstrations {ỹi}Ni=1. In the implementation, to produce the

ith sample, we look up the indices of the items used in ỹi, which constructs item set Xi. Now we

make predictions using our model on this item set P̂θ(.|Xi). The model produces a probability

distribution for each item which can be sampled and used as a prediction {ŷi}Ni=1.

5.5.3.2 Update model parameters

We update θ until convergence using Algorithm 3. For our logistic regression model, the

gradient is:

∇θ log P̂θ(ŷ|X) = ϕ(ŷ,X)− Eŷ|X∼P̂θ

[
ϕ(ŷ,X)

]
,

where ϕ denotes the feature function and ϕ(ŷ,X) =
∑M

m=1 ϕ(ŷm,xm) is the corresponding

feature function for the ith set of reference decisions. We employ a learning rate of η = 0.01.
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TABLE IV: Experimental results on noise-free datasets, along with the αk values learned for
each feature in subdominance minimization.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff

αk 29.63 10.77 5.83 13.42 29.33 4.51 3.34 57.74
γ-superhuman 100% 100% 100% 100% 100% 100% 100% 98%

MinSub-Fair (ours) 0.1937 0.0310 0.0093 0.1760 0.3600 0.0320 0.0367 0.1723
MFOpt 0.3157 0.0132 0.0225 0.2092 0.4597 0.0919 0.0397 0.1533

post proc dp 0.2265 0.1442 0.0879 0.2304 0.3532 0.0879 0.0884 0.1605
post proc eqodds 0.2176 0.1572 0.1396 0.1451 0.3513 0.1442 0.1584 0.1485
fair logloss dp 0.3835 0.0246 0.0577 0.1158 0.4846 0.0053 0.1455 0.1832

fair logloss eqodds 0.3776 0.1179 0.0238 0.1380 0.4870 0.1272 0.0119 0.1539

TABLE V: Experimental results on datasets with noisy demonstrations, along with the αk

values learned for each feature.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff

αk 29.63 10.77 5.83 13.42 29.33 4.51 3.34 57.74
γ-superhuman 100% 100% 100% 100% 100% 100% 100% 98%

MinSub-Fair (ours) 0.1937 0.0310 0.0093 0.1760 0.3600 0.0320 0.0367 0.1723
MFOpt 0.3157 0.0132 0.0225 0.2092 0.4597 0.0919 0.0397 0.1533

post proc dp 0.2265 0.1442 0.0879 0.2304 0.3532 0.0879 0.0884 0.1605
post proc eqodds 0.2176 0.1572 0.1396 0.1451 0.3513 0.1442 0.1584 0.1485
fair logloss dp 0.3835 0.0246 0.0577 0.1158 0.4846 0.0053 0.1455 0.1832

fair logloss eqodds 0.3776 0.1179 0.0238 0.1380 0.4870 0.1272 0.0119 0.1539

5.5.4 Experimental Results

After training each model, e.g., obtaining the best model weight θ∗ from the training data

(train-all) for superhuman, we evaluate each on unseen test data (test-all). We employ

hard predictions (i.e., the most probable label) using our approach at test time rather than

randomly sampling.
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TABLE VI: Percentage of reference demonstrations that each method outperforms in all
prediction/fairness measures.

Adult

ϵ = 0.0
Adult

ϵ = 0.2
COMPAS

ϵ = 0.0
COMPAS

ϵ = 0.2

MinSub-Fair (ours) 96% 100% 100% 98%
MFOpt 42% 0% 18% 18%
post proc dp 16% 86% 100% 80%
post proc eqodds 0% 66% 100% 88%
fair logloss dp 0% 0% 0% 0%
fair logloss eqodds 0% 0% 0% 0%

5.5.4.1 Noise-free reference decisions

Our first set of experiments considers learning from reference decisions with no added noise.1

The results are shown in Figure 17 and Figure 18. We observe that our approach outperforms

demonstrations in all fairness measures and shows comparable performance in accuracy. The

(post proc dp) performs comparably to the average of demonstrations in all dimensions, hence

our approach can outperform it in all fairness measures. In comparison to (post proc dp), our

approach can outperform in all fairness measures but is slightly worse in prediction error.

We show the experiment results along with αk values in Table IV. Note that the margin

boundaries (dotted red lines) in Figure 17 and Figure 18 are equal to 1
αk

for measure k, hence

there is reverse relation between αk and margin boundary for measure k. We observe larger

values of αk for prediction error and demographic parity difference. The reason is that these

1Added noise does not imply the original dataset is noise-free.
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measures are already optimized in demonstrations and our model has to increase αk values for

those measures to sufficiently outperform them.

5.5.4.2 Noisy reference decisions

In our second set of experiments, we introduce significant amounts of noise (ϵ = 0.2) into

our reference decisions. We similarly add this noise to the training datasets (train-all) of the

baseline methods. The results for these experiments are shown in Figure 19 and Figure 20. We

observe that in the case of learning from noisy demonstrations, our approach still outperforms

the reference decisions.

The main difference here is that due to the noisy setting, demonstrations have worse prediction

error but regardless of this issue, our approach still can achieve a competitive prediction error.

We show the experimental results along with αk values in Table V.

5.5.4.3 Relationship of noise to superhuman performance

We also evaluate the relationship between the amount of augmented noise in the label

and protected attribute of demonstrations, with achieving γ-superhuman performance in our

approach. As shown in Figure 21, with slightly increasing the amount of noise in demonstrations,

our approach can outperform 100% of demonstrations and reach 1-superhuman performance. In

Table VI we show the percentage of demonstrations that each method can outperform across all

prediction/fairness measures (i.e., the γ−superhuman value).

5.5.4.4 Experiment with more measures

Since our approach is flexible enough to accept wide range of fairness/performance measures,

we extend the experiment on Adult to K = 5 features. In this experiment we use Demographic
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Parity (D.DP), Equalized Odds (D.EqOdds), False Negative Rate (D.FNR), False Positive Rate

(D.FPR) and Prediction Error as the features to outperform reference decisions on. The results

are shown in Figure 22.

5.6 Conclusions

In this paper, we introduce superhuman fairness, an approach to fairness-aware classifier

construction based on imitation learning. Our approach avoids explicit performance-fairness

trade-off specification or elicitation. Instead, it seeks to unambiguously outperform human

decisions across multiple performance and fairness measures with maximal frequency. When

successful, this provides important guarantees for stakeholders with a broad set of possible

preferences for performance and fairness measures. We develop a general framework for pursuing

this based on subdominance minimization (Ziebart et al., 2022) and policy gradient optimization

methods (Sutton and Barto, 2018) that enable a broad class of probabilistic fairness-aware

classifiers to be learned. Our experimental results show the effectiveness of our approach in

outperforming synthetic decisions corrupted by small amounts of label and group-membership

noise when evaluated using multiple fairness criteria combined with predictive accuracy.

5.6.1 Societal impacts

By design, our approach has the potential to identify fairness-aware decision-making tasks

in which human decisions can frequently be outperformed by a learned classifier on a set of

provided performance and fairness measures. This has the potential to facilitate a transition

from manual to automated decisions that are preferred by all interested stakeholders, so long

as their interests are reflected in some of those measures. Since the formulation only provides
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preference guarantees for stakeholders with nonnegatively-weighted combinations of performance

and fairness measures, it may reduce the negative impact of stakeholders in human-produced

decision-making from successfully seeking negative outcomes for specific groups.

Despite these benefits, our approach also has limitations. First, when performance-fairness

tradeoffs can either be fully specified (e.g., based on first principles) or effectively elicited, fairness-

aware classifiers optimized for those trade-offs should produce better results than our approach,

which operates under greater uncertainty cast by the noisiness of human decisions. Second, if

target fairness concepts lie outside the set of measures we consider, our resulting fairness-aware

classifier will be oblivious to them. Third, our approach assumes human-demonstrated decision

are well-intentioned, noisy reflections of desired performance-fairness trade-offs. If this is not

the case, then our methods could succeed in outperforming them across all fairness measures,

but still not provide an adequate degree of fairness.

5.6.2 Future directions

We have conducted experiments with a relatively small number of performance/fairness

measures using a simplistic logistic regression model. Scaling our approach to much larger

numbers of measures and classifiers with more expressive representations are both of great

interest. Additionally, we plan to pursue experimental validation using human-provided fairness-

aware decisions in addition to the synthetically-produced decisions we consider in this paper.

More broadly, other techniques that can minimize subdominance or provide generalization

guarantees for stakeholders adoption preferences of algorithmic decision-making are of significant

interest.
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Figure 17: Prediction error versus difference of : Demographic Parity (D.DP), Equalized Odds
(D.EqOdds) and Predictive Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0)
for Adult dataset.
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Figure 18: Prediction error versus difference of : Demographic Parity (D.DP), Equalized Odds
(D.EqOdds) and Predictive Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0)
for COMPAS dataset.
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Figure 19: Experimental results on the Adult dataset with noisy demonstrations (ϵ = 0.2).
Margin boundaries are shown with dotted red lines. Each plot shows the relationships between
two features.
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Figure 20: Experimental results on the COMPAS dataset with noisy demonstrations (ϵ = 0.2).
Margin boundaries are shown with dotted red lines. Each plot shows the relationships between
two features.
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Figure 21: The relationship between the ratio of augmented noise in the label and the
protected attribute of reference decisions produced by post-processing (upper) and fair-
logloss (lower) and achieving γ-superhuman performance in our approach.
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Figure 22: The trade-off between each pair of: difference of Demographic Parity (D.DP),
Equalized Odds (D.EqOdds), False Negative Rate (D.FNR), False Positive Rate (D.FPR) and
Prediction Error on test data using noiseless training data (ϵ = 0) for Adult dataset.



CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

This thesis has examined the problem of fairness in machine learning models through multiple

perspectives, incorporating four distinct approaches to tackle the problem. The first three works

leverage an adversarial robust framework, with two focusing on fair classification and the third

addressing a structured prediction task. The fourth work takes a different approach and leverages

ideas from imitation learning to build a fair classification algorithm.

In the first work, we derived a new classifier from the first principles of distributionally

robust estimation, which formulated a learning objective imposing fairness requirements on the

predictor and maintained training data characteristics through feature-matching constraints.

The resulting parametric exponential family conditional distribution resembled a truncated

logistic regression model and performed well in benchmark fairness datasets, making it quite
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general due to the flexibility of its construction as a robust estimation. In the second work,

we developed a novel adversarial approach for seeking fair decision-making under covariate

shift, which operated appropriately even when portions of the shift between source and target

distributions were extreme, in contrast with importance weighting methods. To address the lack

of labeled target data points, we proposed measuring approximated fairness against a worst-case

adversary constrained by source data properties and group marginals from the target. We

incorporated fairness as a weighted penalty and tuned the weighted penalty to provide fairness

against the adversary.

Another work leverages the adversarial robust learning framework in solving structured

prediction problems. In this work, we developed a learning-to-rank system that achieves fairness

of exposure for protected groups while maximizing utility to the users. Our approach constructs

a minimax game with the ranker player choosing a distribution over rankings constrained to

provide fairness while maximizing utility, and an adversary player choosing a distribution of

item relevancies that minimizes utility while being similar to training data properties. Our

method was able to trade-off between utility and fairness much better at high levels of fairness

than existing baseline methods. Although our work addressed the problem of providing more

robust fairness given a chosen fairness criterion, it did not provide an answer to the broader

question of which fairness criterion is appropriate for a particular ranking application.

The final work takes a distinct approach, incorporating ideas from imitation learning

to create a fair classification algorithm. The work introduces the concept of ”superhuman

fairness,” which seeks to surpass human decision-making in terms of both performance and
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fairness across a range of measures. This approach does not require explicit specification or

elicitation of performance-fairness trade-offs. Instead, it employs subdominance minimization

and policy gradient optimization methods to enable the learning of a broad class of probabilistic

fairness-aware classifiers. Experimental results demonstrate the effectiveness of the approach

in outperforming synthetic decisions that are affected by small amounts of label and group-

membership noise when evaluated using multiple fairness criteria in conjunction with predictive

accuracy.

Together, these works provide a comprehensive view of the problem of fairness in machine

learning, addressing various challenges from different angles. Our contributions include novel

approaches to fairness-aware log loss classification, addressing fairness under covariate shift,

fair learning-to-rank, and superhuman fair classification. While our work provides important

insights into ensuring fairness in machine learning models, there is still much work to be done

to address the broader societal implications of these models and the trade-offs between different

fairness criteria in practical applications.

In the next section, we discuss our ongoing work on Fairness-aware Bipartite Matching

problem where we leverage distributionally robust learning framework.
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6.2 Fairness-aware Bipartite Matching

Formulation and polynomial time complexity of solving weighted bipartite matching prob-

lems has made this task a suitable framework for a wide variety of applications: recognizing

correspondences in similar images (Belongie et al., 2002; Liu et al., 2008; Rui et al., 2007), word

alignment (Chan and Ng, 2008), providing ranked lists of items for information retrieval tasks

(Amini et al., 2008), to name but a few. In this definition, given the two sets of elements, the

goal is to find the one-to-one matching, which has the largest sum of pairwise utilities.

The machine learning modeling slightly differs from the classical combinatorial definition;

instead of having weights, feature vectors corresponding to each edge are given. Therefore,

machine learning methods seek to estimate the pairwise utilities of bipartite graphs so that the

maximum weighted complete matching is most compatible with the (distribution of) ground

truth matchings of training data.

The existing algorithms that minimize the loss are prone to amplifying existing stereotypes

towards protected groups which ultimately leads to a more favorable outcome for one of the

groups. For example, in the problem of applicants to jobs matching where applicants divide into

male and female groups, as shown in Figure 23 (left), solving the weighted bipartite matching

learned from the weights results in a matching where the difference between the sum of weights

belong one protected group (males) to the other (females) is relatively high. This indicates that

applicants in one of the groups are getting matched with jobs that are more aligned with their
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desired attributes (e.g., jobs with higher wages). On the other hand, in Figure 23 (right), the

sum of the weights for both protected groups are equal.

Aside from fairness concerns, the exponentiated potential fields models (Lafferty et al.,

2001b; Petterson et al., 2009a) and maximum margin methods based on hinge loss surrogate

(Taskar et al., 2005; Tsochantaridis et al., 2005) suffer from intractability when sets are large and

lack fisher consistency, respectively. To address consistency and efficiency deficiencies, Fathony

et al. (Fathony et al., 2018) have proposed a new approach by using an adversarial min-max

game. We use this framework since doing so will enable us to introduce fairness constraints to

the optimization objective. To the best of our knowledge, this is the first work that investigates

fairness in maximum bipartite matching problems.

6.2.1 Approach

We propose an adversarial approach to address unfairness towards demographic groups in

maximum bipartite matching problems. Our approach efficiently solves the maximum bipartite

matching task while ensuring group fairness.

6.2.1.1 Adversarial Approach

In bipartite matching task, training data consists of two sets of nodes (sets M and N) with

equal size and π as matching assignment. To demonstrate joint feature representations (edges)

in bipartite graph x we use ψ function where ψi(x, πi = j) denotes edge weight connecting ith

node from set M to jth node from set N. In this setting, ψ(x, π) is defined additively over each

node assignment in graph x, i.e. ψ(x, π) =
∑n

i=1 ψi(x, πi),

In our proposed adversarial framework, the goal is to find a predictor that 1) robustly minimizes
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Matching: π1 = 4, π2 = 3, π3 = 1, π4 = 2
Given ψ14 = 8, ψ23 = 6, ψ31 = 4, ψ42 = 3
Sum: Σiψi(πi) = 8 + 6 + 4 + 3 = 21
For males: Σiψi(πi) = 8 + 6 = 14
For females: Σiψi(πi) = 4 + 3 = 7

Matching: π1 = 1, π2 = 3, π3 = 4, π4 = 2
Given ψ11 = 4, ψ23 = 6, ψ34 = 4, ψ42 = 3
Sum: Σiψi(πi) = 4 + 6 + 7 + 3 = 20
For males: Σiψi(πi) = 4 + 6 = 10
For females: Σiψi(πi) = 7 + 3 = 10

Figure 23: Two matchings: the left one maximizes sum of weights but ignores demographic
parity; Matching on the right maximizes sum of weights while satisfying demographic parity.

the Hamming loss against the worst-case permutation mixture probability that is consistent

with the statistics of the training data, and 2) satisfies group fairness constraints on different

demographic groups (e.g. males vs females) existing on one or both set of nodes. In adversarial

approach, a predictor makes a probabilistic prediction over the set of all possible assignments

(denoted as P̂ ). Instead of evaluating the predictor with empirical distribution, the predictor is

pitted against and adversary that also makes a probabilistic prediction (denoted as P̌ ). The

predictor’s objective is to minimize the expected loss function calculated from the predictor’s

and adversary’s probabilistic predictions, while the adversary seeks to maximize the loss. The

adversary is constrained to select a probabilistic prediction that matches the statistical summaries
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of the empirical training distribution (denoted as P̃ ) via moment matching constraints on joint

features ψ(x, π). To mitigate fairness issue, predictor is constrained to ensure joint feature

representations are equal across two demographic groups (G0 and G1). For now, we define

fairness constraints for one set of nodes. The formulation can be written as follows:

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] (6.1)

s.t. ∥Ex∼P̃ ;π̌|x∼P̌ [

n∑
i=1

ψi(x, π̌i)]− E(x,π)∼P̃ [

n∑
i=1

ψi(x, πi)]∥ ≤ ε (6.2)

∥Ex∼P̃ ;π̂|x∼P̂ [
∑
i∈G0

ϕi(x, π̂i)]− Ex∼P̃ ;π̂|x∼P̂ [
∑
i∈G1

ϕi(x, π̂i)]∥ ≤ δ (6.3)

where the inequality Equation 6.3 denotes fairness constraint and δ is a threshold that indicates

maximum allowed unfairness. To solve the optimization in Equation 6.1 we can use method of

Lagrangian multipliers and strong duality for convex-concave saddle point problems (Von Neu-

mann and Morgenstern, 1945; Sion, 1958). The equivalent dual formulation can be written

as:

min
θ

max
λ

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] (6.4)

+ θ⊺(Ex∼P̃ ;π̌|x∼P̌ [
n∑

i=1

ψi(x, π̌i)]− E(x,π)∼P̃ [
n∑

i=1

ψi(x, πi)]) (6.5)

+ λ⊺(Ex∼P̃ ;π̂|x∼P̂ [
∑
i∈G0

ϕi(x, π̂i)]− Ex∼P̃ ;π̂|x∼P̂ [
∑
i∈G1

ϕi(x, π̂i)]) (6.6)

+ ε∥θ∥∗ + δ∥λ∥∗ (6.7)
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where θ is Lagrange dual variable for moment matching constraints and λ is penalty parameter for

fairness constraints. For the loss function we use Hamming distance, loss(π̂, π̌) =
∑n

i=1 1(π̂i ̸= π̌i).

In this setting, if the size of game is n (number of nodes in each set), there exist n! actions

(permutations) for both predictor player π̂ and adversarial approximator player π̌. This results

in O(n!) sized game which is intractable for modestly-sized problems.

6.2.1.2 Marginal Distribution Formulation

To improve the computational efficiency of the adversarial approach, we use a marginal

distribution formulation that depends only on the marginal probabilities of the assignment. This

formulation leverages the Birkhoff-von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953),

which states that the convex hull of a set of permutation matrices constructs a convex polytope

in Rn2
. In this setting, the number of quantities we optimize grows quadratically, which is

a significant improvement over the non-marginal approach where the space of distributions

over permutations of n objects grows factorially. We use P and Q as the marginal probability

matrices for the predictor and adversary, respectively, and Y as the ground truth permutation in

the training data. We also use Xk as a n×n matrix to represent the kth feature of ψi(x, πi = j).
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